УДК 675.03.031.81

Профессор Ю.Ф. Шутилин, доцент О.В. Карманова, старший преподаватель А.С. Казакова (Воронеж. гос. ун-т инж. технол.) кафедра технологии переработки полимеров, тел. (473) 249-92-37

Применение критерия деструкции в описании термоокисления полидиенов

Рассмотрена взаимосвязь молекулярно-структурных характеристик полидиенов с их макроскопическими свойствами в процессах термоокисления.

The relationship of molecular structural characteristics of polydienes and their macroscopic properties in thermal oxidation processes was examined.

Ключевые слова: полидиен, термоокисление, критерий деструкции, структура и свойства

Температура как мера интенсивности теплового движения в основном определяет химические процессы в полимерах через возможность перехода системы в другое состояние и необходимую для этого энергию. Предлагается несколько механизмов переноса внутренней энергии в материалах: фононный (корпускулярный) - связывают [1] с образованием фононов-квазичастиц; рептационное (червеобразное, волновое) движение цепей представляется [2] как смещение участков цепи волнообразным перемещением сегментов вдоль макромолекулы; солитонный механизм [3-4] определяет нелинейные, продольно коллективные возбуждения, передающиеся уединенными продольными волнами сжатия и/или растяжения вдоль макромолекулы.

Проведены исследования полидиенов с различным химическим строением и микроструктурой (степенью регулярности) цепей, в т.ч. приняты обозначения каучуков: СКДН – неодимовый, СКДт – титановый, СКДЛ – литиевый полибутадиены. Образцы в виде пленок толщиной 20 мкм отливали из 1 %-ных растворов толуола на монокристаллах KBr, сушили при 20 °C и термообрабатывали в термостате при различных температурах. После прогрева в течение определенного времени пленки с подложкой исследовали на ИК спектрометре, затем снимали окисленный полимер с подложки и определяли характеристическую вязкость - [η] его растворов в толуоле. Инфракрасные спектры пленок изучали в диапазоне частот 400-4000 см-1. Начало при-соединения и кинетику присоединения кислорода к пленкам фиксировали по появлению (и росту) полос

© Шутилин Ю.Ф., Карманова О.В., Казакова А.С., 2013

- поглощения кислородосодержащих групп –OH (3649 см⁻¹) и -C=O (1720 см⁻¹). Из примеров представления кинетики окисления полидиенов (рисунок 1) можно выделить 5 этапов осуществления последовательнопараллельных реакций:
- 1. Начало процесса характеризуется индукционным периодом сохраненения [η], а также микроструктуры цепей и происходит без видимого (методом ИКС) присоединения килорода.
- 2. Резкое уменьшение (первое) характеристической вязкости приписывается [5-7] процессам межмономерной деструкции цепей, происходящей без видимого (методом ИКС) присоединения кислорода.
- 3. Сохранение [η] (т.е. ММ) на 3 этапе термоокисления обусловлено стабилизацией структуры эластомеров, возможно, вследствие накопления активных центров, способствующих впоследствии присоединению кислорода.
- 4. Второе термоокислительное уменьшение длины цепей (ММ) и [η] можно связать с активным присоединеним кислорода по С=С связям и к СН₂-группам, поскольку в ИКспектрах интенсивность соответствующих полос уменьшается. Резко растет доля кислородсодержащих (СО и ОН) групп.
- 5. Стабилизация термоокислительной структуры каучуков. При этом отмечена ранее описанная [5-7] аномальная потеря растворимости пленок в толуоле, наблюдаемая на фоне снижения ММ, при времени тх и экстраполяционном значении [η]_х. С=С связи в окончательных продуктах окисления товарных полидиенов отсутствуют.

При обработке и обсуждении полученных результатов нами использовались следующие обобщения и числовые величины (таблица 1):

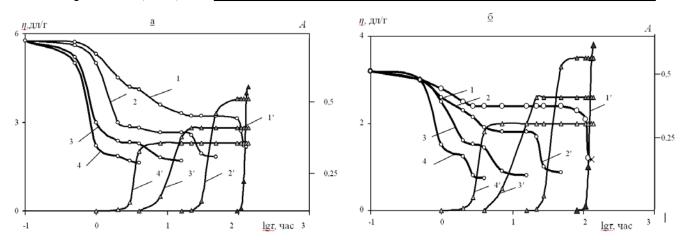


Рисунок 1 - Кинетика окисления пленок (20 мкм): НК (а) и СКДн (б) при температурах 80 (1), 100 (2), 120 (3) и 140 0 C (4) по [η] (1 – 4) и ОН группам (1′ – 4′). Т а б л и ц а 1

Основные структурно-химические характеристики термоокисленных пленок (20 мкм) полидиенов

Каучук и его характеристики		До окисления	Температура окисления, ⁰ С			
			80	100	120	140
НК	$[\eta]_{\scriptscriptstyle \Pi \Pi . 3},$ д $_{}$ / $_{}$ Г	5,75	3,22	2,65	2,37	2,2
	τ _{н3} / τ _{κ2} , час	-	3,7/93	2,3/23,5	2,1/5,9	1,2/2
	τ _{н4} по ОН гр., час	_	106	28	8,5	2,5
	$A_{\rm OH} / A_{\rm CO}, \cdot 10^{-1}$	0/0	0,52/0,9	0,48/0,8	0,36/0,54	0,3/0,4
	$A_{\rm CH2} / A_{\rm C=C}, \cdot 10^{-1}$	0,58/0,29	0,11/0	0,13/0	0,14/0	0,21/0
СКИ-3	[η] _{пл.3} , дл/г	4,15	3,1	2,3	2,10	1,95
	τ _{н3} / τ _{κ2} , час	_	1,3/60	1,2/8	1,1/3,8	0,6/1,1
	τ _{н4} по ОН гр., час	_	92	20	6	1,7
	$A_{\rm OH} / A_{\rm CO}, \cdot 10^{-1}$	0/0	0,46/0,75	0,42/0,69	0,28/0,48	0,2/0,39
	$A_{\rm CH2} / A_{\rm C=C}, \cdot 10^{-1}$	0,46/0,22	0,05/0	0,09/0	0,11/0	0,16/0
СКИЛ	[η] _{пл.3} , дл/г	4,7	3,25	2,55	2,44	2,35
	τ _{н3} / τ _{κ2} , час	_	1,6/64	1,4/11	1,1/2,6	1,0/1,6
	τ _{н4} по ОН гр., час	_	76	15	4	1,4
	$A_{\rm OH} / A_{\rm CO}, \cdot 10^{-1}$	0/0	0,39/0,79	0,34/0,7	0,22/0,42	0,19/0,37
	$A_{\rm CH2} / A_{\rm C=C}, \cdot 10^{-1}$	0,5/0,21	0,05/0	0,07/0	0,08/0	0,11/0
СКДн	$[\eta]_{\scriptscriptstyle \Pi \Pi . 3},$ дл/ Γ	3,2	2,5	2,0	1,6	1,4
	$ au_{ m H3}$ / $ au_{ m K2}$, час	_	2,3/91	2,2/23	2,1/6,5	1,6/2,1
	т _{н4} по ОН гр., час	_	92	26	7	2,2
	$A_{\rm OH} / A_{\rm CO}, \cdot 10^{-1}$	0/0	0,52/0,82	0,44/0,78	0,39/0,7	0,31/0,58
	$A_{\rm CH2} / A_{\rm C=C}, \cdot 10^{-1}$	0,65/0,35	0,11/0	0,09/0	0,08/0	0,08/0
СКДт	$[\eta]_{\pi\pi.3},$ дл/г	2,36	2,1	2,0	1,9	1,85
	$ au_{\rm H3}$ / $ au_{\rm K2}$, час	_	1,3/77	1,2/16	1,1/5,5	0,8/1,2
	$ au_{{\scriptscriptstyle \mathrm{H}}^4}$ по ОН гр., час	_	80	20	6	1,5
	$A_{\rm OH} / A_{\rm CO}, \cdot 10^{-1}$	0/0	0,39/0,82	0,36/0,76	0,33/0,69	0,29/0,59
	$A_{\rm CH2} / A_{\rm C=C}, \cdot 10^{-1}$	0,58/0,3	0,05/0	0,08/0	0,09/0	0,12/0
СКДЛ	[η] _{пл.3} , дл/г	2,5	2,12	1,95	1,83	1,77
	$ au_{{ t H}3}$ / $ au_{{ t K}2}$, час	_	1,5/44	1,2/14	0,8/3,6	0,7/1,2
	т _{н4} по ОН гр., час		48	16	4,5	1,5
	$A_{\rm OH} / A_{\rm CO}, \cdot 10^{-1}$	0/0	0,42/0,78	0,4/0,74	0,38/0,6	0,3/0,57
	$A_{\rm CH2} / A_{\rm C=C}, \cdot 10^{-1}$	0,56/0,27	0,08/0	0,09/0	0,1/0	0,12/0

⁻ $au_{\rm H1}$ — экстраполяционное время индукционного периода начала окисления, соответствующее незначительному уменьшению [η]; $au_{\rm H1} = au_{\rm H2}$;

⁻ $\tau_{\kappa 2}$ — то же самое для начала первого спада [η];

- $\tau_{\kappa 2}$ экстраполяционное время окончания периода II и начало периода III термоокисления пленок;
- $\tau_{\rm H3} = \tau_{\rm K2}$ экстраполяционное время начала периода III, совпадающее с $\tau_{\rm K2}$;
- $\tau_{\rm K3} = \tau_{\rm H4}$ экстраполяционное время окончания периода III, совпадающее по времени с началом периода IV;
- $[\eta]_{\text{пл}}$ характеристическая вязкость, определенная расчетом в центре плато III, т.е. по времени $(\tau_{\text{к3}} \tau_{\text{н3}})/2$;
- $[\eta]_{\times}$ экстраполяционная величина, близкая по значению к гипотетической вязкости сшитого (нерастворимого) образца, соответствующая времени τ_{\times} потери растворимости исследуемых пленок.

Аналогичные параметры термоокисления выделяли из кинетики изменения оптической плотности — А полос поглощения CH_2 , C=C, CO и OH групп ИК спектров исследуемых полимеров. Например, определяли экстраполяционное время $\tau_{\rm H4}$ начала активного присоединения кислорода по появлению в ИК спектрах OH групп или определяли значения начальной и конечной (по завершении испытаний пленок при $\tau > \tau_{\rm x}$) оптической плотности полос поглощения различных групп и связей C=C (таблица 2). Предложенные характеристики использованы для описания и обоснования результатов исследования различных образцов, в различных условиях термостатирования.

Установлено, что с увеличением температуры прогрева пленок наблюдаются следующие явления (таблица1):

- 1. Сужение зоны III сближение зон II ($\tau_{\rm K2}$) и IV ($\tau_{\rm H4}$) в основном из-за большего смещения зоны IV к таковой II, что свидетельствует о меньшей энергии активации процесса IV термоокисления макромолекул.
- 2. Увеличение глубины деструкции и на этапе II определяли, например, по изменению величины $[\eta]_{\text{пл}}$ в середине зоны III, и по завершении испытаний $[\eta]_{\text{x}}$. При этом глубина деструкции полиизопренов уменьшается от НК к СКИЛ и она выше, чем у соответствующих полибутадиенов.
- 3. Степень термоокисления по кислородсодержащим группам СО и ОН в окончательных продуктах (по завершении) термоокисления у всех полидиенов с ростом температуры уменьшается (особенно заметно у полиизопренов), что требует дополнительных исследований и анализа.

- 4. Доля «оставшихся» CH_2 групп в продуктах термоокисления у полиизопренов и у СКДт, СКДЛ возрастает, а у более регулярного СКДн слабо уменьшается.
- В рамках термофлуктуационносолитонного описания термоокисления полидиенов при различных температурах можно выделить два критерия, определяющих эффективность процесса в зависимости от температуры:
- вероятность термофлуктуационного образования солитона возрастает с увеличением температуры и определяет скорость химической реакции. Интенсификация реакций проявляется согласно рисунку 1 и таблице. 1 в уменьшении $[\eta]_{\text{пл}}$, а также экстраполяционных времен $\tau_{\text{ні}}$, $\tau_{\text{кі}}$;
- длина $L_{\rm p}$ участка цепи или расстояние пробега солитона до разрыва макромолекулы уменьшается при увеличении температуры, что проявляется в снижении $[\eta]_{\rm пл}$, увеличении числа осколков цепи после ее разрыва $h_{\rm д}$ (таблица 2) и др.

Таблица2 Критерии деструкции в зоне плато III $(h_{д3})$ и по завершении испытаний $(h_{дx})$ термоокисленных пленок (20 мкм) полидиенов (при $\alpha=0.75$ в уравнении МКХ)

Каучуки	Температура окисления, °С				
	80	100	120	140	
$HK [\eta]_0 =$	2,2/3,6	2,8/4,2	3,2/4,7	3,6/5,1	
5,75 дл/г					
СКИ-3 [η] ₀	1,5/1,7	2,2/2,5	2,5/3,0	2,7/3,6	
= 4,12 дл/г					
СКИЛ $[\eta]_0$	1,6/2,3	2,3/2,8	2,4/3,4	2,5/3,9	
$=4,7$ дл/ Γ					
СКДн $[\eta]_0 =$	1,5/3,7	1,9/4,7	2,5/5,4	3,0/5,7	
3,2 дл/г					
СКДт $[\eta]_0 =$	1,2/1,4	1,25/1,7	1,33/2,7	1,4/3,6	
2,36 дл/г					
СКДЛ $[\eta]_0$	1,25/1,67	1,4/2,0	1,5/2,2	1,6/2,3	
= 2,5 дл/г					

Согласно солитонному подходу волны сжатия-растяжения распространяются вдоль цепи, накапливают энергию, возрастает их амплитуда вплоть до достижения энергии химических скелетных связей. В рассматриваемых случаях имеется ввиду С-С или С=С связи полидиенов. Поскольку эти связи неравноценны по прочности, то наличие 1,4-*цис-транс*-1,2-3,4-межмономерных переходов, присоединений типа «г-х», «г-г», «х-х» обусловливает первоочередной разрыв этих дефектных мест макромолекул, т.е. более дефектные цепи более склонны к солитонной деструкции связей. Таким образом,

длина или расстояние пробега волны солитона до разрыва макромолекул определяет размер «осколков» распада, т.е. для каждого конкретного полимера $L_{\rm p} \approx$ const, и зависит от молекулярно-химического строения цепей, числа дефектов в них и т.д. Вероятно условие $L_{\rm p} \approx$ const будет определять большее число осколков цепи у более длинных макромолекул. Это положение обосновывается авторами [7-8] и считается постулатом химии полимеров.

Число осколков цепи, образовавшихся в результате разрывов макромолекулы, можно рассчитать, разделив первоначальную среднюю молекулярную массу — M_0 на ММ полимера после его деструкции. Принимая за основу принцип относительного сравнения и используя для этой цели уравнение [9-10] Марка-Куна-Хаувинка [η] = KM^{α} , предлагается следующая формула:

$$h_{\pi} = \frac{M_0}{M} = \alpha \sqrt{\frac{\left[\eta\right]_0}{K}} / \left(\frac{\left[\eta\right]}{K}\right) = \alpha \sqrt{\frac{\left[\eta\right]_0}{\left[\eta\right]}} = \left(\frac{\left[\eta\right]_0}{\left[\eta\right]}\right)^{\frac{1}{\alpha}}, (1)$$

где [η - характеристическая вязкость образцов в зоне плато — III этап термоокисления; h_{π} — критерий деструкции из измерений характеристической вязкости, α — константа уравнения МКХ ($\alpha_{\rm cp}=0.75$ — величина усредненная из расчетов 35 пар «полимер-растворитель»).

К достоинствам этого критерия следует отнести то, что он позволяет сравнивать эффективность распада (а также структурирования при $h_{\rm A} < 1$) различных полимеров в разнообразных по своей природе химических реакциях и условиях их проведения.

Глубина деструкции согласно критерию $h_{\rm д3}$ по $[\eta]_{\rm пл}$ растет с увеличением температуры испытания пленок (таблица 2). Дополнительные дефекты типа «г-г», «х-х», а также 1,4-*цис-транс*-1,2(3,4)- переходы в макромолекулах синтетических полиизопренов (СКИ-3 и СКИЛ]) и менее регулярных СКДт, СКДЛ способствуют некоторому смещению равновесия в сторону сшивания цепей (при этом величины $h_{\rm д}$ уменьшаются) с предпочтительным участием отмеченных выше дефектных фрагментов макромолекул.

Специфическая структура симметрично мономерных цепей 1,4-полибутадиенов — отсутствие нерегулярностей вида «г-г» и «х-х» — в сочетании с имеющимися в литературе [11] представлениями о склонности 1,2-полибутадиенов к структурированию при термоокислении объясняет увеличение сте-

пени распада цепей от более регулярного СКДн к менее регулярному СКДт.

Однако при «избытке» дефектов вида 1,4-*цис-транс*-1,2-межмономерных переходов именно в каучуке СКДЛ наблюдается некоторое увеличение числа разрывов цепей и $h_{\rm д}$ в сравнении с СКДт (таблица 2) вследствие смещения равновесия процесса в сторону термофлуктуационной деструкции макромолекул.

Имеются определенные трудности в интерпретации чисто термофлуктуационных распадов макромолекул на этапе II и стабилизации ММ на этапе III термоокисления пленок исследованных товарных полидиенов, а именно:

- 1. В пределах чувствительности метода ИКС не удалось установить (рисунок 1) заметных структурно-химических изменений макромолекул полиизопренов и полибутадиенов во временных пределах $\tau_{\kappa 2} \tau_{\kappa 3}$. Достаточно заметное уменьшение доли CH_2 , C=C и увеличение количества CO и OH групп наблюдали (например, по $\tau_{\rm H4}$ OH групп таблица 1) в начале IV термоокислительного этапа деструкции цепей каучуков. Приведенные в таблице 1 значения максимальной оптической плотности полос поглощения соответствующих связей и групп основной цепи относятся к завершающей V стадии испытаний после перехода образцов в нерастворимое состояние.
- 2. Пока не ясен подход применения $h_{\rm д}$ к сравнению числа «осколков» цепей каучуков, имеющих значительные различия в исходных величинах [η]0 или M_0 . Логика и данные авторов [7-8] показывают, что при термофлуктуационном распаде цепей размеры участков макромолекул между солитоно-эквивалентными разрывами цепных химических связей (по достижении и превышении энергии волны солитона уровня энергии соответствующей химической связи), должны быть статистически равными, например, $M_{\rm s}$, для одного и того же (по составу, структуре) полимера.

Тогда, для более высокомолекулярного полимера в одних и тех же условиях термофлуктуационного распада цепей количество осколков и h_{π} будет больше, чем для аналогичного полимера с меньшей молекулярной массой. Например, два полиизопрена 1 и 2 с $M_1=3M_2$ в ходе деструкции до «осколков» величиной M_s дадут критерий деструкции $h_{\pi 1} \approx M_1/M_s$ в три раза меньший, чем таковой полимера 2: $h_{\pi 2} \approx M_2/M_s$.

В таблице 3 представлены расчетные значения $h_{\rm д}$, которые достаточно хорошо коррелируют с величинами таблицы 2, хотя характер подложки в обоих типах эксперимента был изменен.

Поэтому в сравнительно узком диапазоне изменения $[\eta]_0$ можно производить по h_{π} качественную оценку и сравнение деструкционно-структурирующих процессов в одном и том же полимере.

 $T\ a\ б\ \pi\ u\ ц\ a\ 3$ Критерии деструкции $h_{\text{\tiny J}}/h_{\text{\tiny X}}$ термоокисленных пленок (20 мкм) товарных полидиенов на KBr

Каучуки	Температура окисления,				
	°C				
	80	100	120	140	
НК	1,78/	2,17/	2,43/	2,61/	
$[\eta]_0$ =5,75дл/ Γ	2,6	2,95	3,2	3,38	
СКИ-3	1,34/	1,81/	1,98/	2,13/	
$[\eta]_0 = 4.12$	1,48	1,98	2,3	2,6	
дл/г					
СКИЛ	1,45/	1,84/	1,93/	2,0/2	
$[\eta]_0 = 4,7$ дл/г	1,88	2,14	2,47	,76	
СКДн	1,28/	1,6/3	2,0/3	2,29/	
$[\eta]_0 = 3,2$ дл/г	2,67	,2	,56	3,76	
СКДт	1,12/	1,18/	1,24/	1,28/	
$[\eta]_0 = 2,36$	1,3	1,5	2,15	2,62	
дл/г					
СКДЛ	1,18/	1,28/	1,37/	1,41/	
$[\eta]_0 = 2,5$ дл/ Γ	1,47	1,67	1,78	1,85	

Еще в большей степени подтверждается необходимость использования критерия h_{π} для обоснования глубины химических превращений исследуемых образцов по завершении испытаний на этапах IV и V, то есть при $\tau < \tau_x$.

Продукты окончательного термоокисления полидиенов вряд ли можно будет идентифицировать по молекулярной массе ($M_{\rm w}, M_{\rm n}$ и т.д.), поскольку окончательный их состав не поддается изучению, а калибровки традиционных приборов, измерения ММ и ММР полимеров в данном случае невозможны. Кроме того, по достижении степени окисления при $\tau \geq \tau_{x}$ (им эквивалентен термин $h_{\rm дx}$) пленки теряют растворимость [5-6], не могут быть переведены раствор и исследованы молекулярноструктурные характеристики. Согласно данным таблицы 1 суммарный эффект (радикальный на стадии II + окислительный на стадиях IV-V) в целом повторял основные признаки рассмотренного выше деструктивного процесса, но выражен значительно сильнее.

Из этого анализа следует заключение о том, что термофлуктуационные (начальные) акты деструкции цепей (II) играют определенную роль в чисто химических реакциях (IV-V) присоединения кислорода к пленкам.

Таким образом, полученные нами и литературные данные совпадают в достаточной степени в отношении взаимосвязи молекулярно-структурных характеристик полидиенов с их макроскопическими свойствами в процессах термоокисления.

ЛИТЕРАТУРА

1 Бартенев, Γ . М. Прочность и механизм разрушения полимеров [Текст]. — М.: Химия, 1984. - 280 с.

 $2\,\mbox{Де Жен, }\Pi.$ Идеи скейлинга в физике полимеров [Текст] / $\Pi.$ Де Жен. - М.: Мир, 1982.-252 с.

3 Савин, А. В. Нелинейная динамика зигзагообразных молекулярных цепей [Текст] / А. В. Савин, Л. И. Маневич, П. Л. Христлансен и др. // Успехи физических наук. - 1979. - Т. 169. - № 3. - С. 255-270.

4 Шутилин, Ю. Ф. Справочное пособие по свойствам и применению эластомеров [Текст] / Ю. Ф. Шутилин. - Воронеж.: ВГТА, 2003. - 871 с.

5 Провольнев, С. А. Влияние различных рецептурно-технологических факторов на изменение молекулярной массы каучуков [Текст] / С. А. Провольнев, Ю. Ф. Шутилин, О. В. Карманова и др. // Каучук и резина. - 2008. - № 1. - С. 39-40.

6 Шутилин, Ю. Ф. Аномалии растворимости при окислении пленок полимеров [Текст] / Ю. Ф. Шутилин, О. В. Карманова, А. В. Шестопалов и др. // Каучук и резина. - 2011. - № 2. - С. 40-42.

7 Эммануэль, Э. М. Химическая физика старения и стабилизация полимеров [Текст] / Э. М. Эммануэль, А. Л. Бучаченко. - М.: Химия, 1982. - 230 с.

8 Шляпников, Ю. А. Антиокислительная стабилизация полимеров [Текст] / Ю. А. Шляпников, С. Г. Кирюшкин, А. П. Марьин. - М.: Химия, 1986. - 256 с.

9 Цветков, В. М. Структура макромолекул в растворах [Текст] / В. М. Цветков, В. Э. Эскин, С. Я. Френкель. - М.: Наука, 1964. – 286 с.

10 Ван Кревелен, Д. В. Свойства и химическое строение полимеров [Текст] / Д. В. Ван Кревелен. - М.: Химия, 1976. - 416 с.

11 Тройнина, Н. Н. Модификация СКИ-3 1,2-полибутадиенами с целью улучшения его технических свойств [Текст]: дис. ... канд. техн. наук: 05.17.06. - Воронеж: ВГТА, 2000. -190 с.

REFERENCES

- 1 Bartenev, G. M. Durability and mechanism of failure of polymers [Text]. M.: Himiya, 1984. 280 p.
- 2 De Gene, P. Scaling concepts in polymer physics [Text] / P. De Gene. Mir, 1982. 252 p.
- 3 Savin, A. V. Nonlinear dynamics of zigzag molecular chains [Text] / A. V. Savin, L. I. Manevitch, P. L. Hristlansen et al // Successes of physical sciences. 1979. V. 169. № 3. P. 255-270.
- 4 Shutilin, Y. F. Handbook on properties and applications of elastomers [Text] / Y. F. Shutilin. Voronezh.: VSTA, 2003. 871 p.
- 5 Provolnev, S. A. The effect of different prescription and technological factors on the molecular weight of the rubber [Text] / S. A. Provolnev, Y. F. Shutilin, O. V. Karmanova et al // Rubber. 2008. № 1. P. 39-40.
- 6 Shutilin, Y. F. Anomalies solubility of the oxidation of polymer films [Text] / Y. F. Shutilin, O. V. Karmanova, A. V. Shestopalov et al // Rubber. 2011. N 2. P. 40-42.

- 7 Emmanuel, E. M. Chemical physics of aging and stabilization of polymers [Text] / E. M. Emmanuel, A. L. Buchachenko. M.: Himiya, 1982. 230 p.
- 8 Shliapnikov, Y. A. Antioxidant stabilization of polymers [Text] / Y. A. Shliapnikov, S. G. Kiryushkin, A. P. Marin. M.: Chemistry, 1986. 256 p.
- 9 Tsvetkov, V. M. Structure of macromolecules in solution [Text] / V. M. Tsvetkov, V. E. Eskin, S. Y. Frenkel. M.: Nauka, 1964. 286 p.
- 10 Van Krevelen, D. V. Properties and the chemical structure of polymers [Text] / D. V. Van Krevelen. M.: Himiya, 1976. 416 p.
- 11 Troinina, N. N. Modification of SKI-3 1,2-polybutadienes with a view to improving its technical properties [Text] dis. ... PhD: 05.17.06. Voronezh: VSTA, 2000. -190 p.