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Abstract. Development of in situ forming implants (ISFI) based on PLGA polymers is one of the most promising approaches to long-
acting injectables. Evaluation of the drug release rate from such depot formulations requires methods that most closely simulate in vivo
conditions. Gel phantoms mimic the elastic properties of muscle tissue and appear to be a promising replacement for conventional
methods using physiologically relevant buffer solutions. Accordingly, the aim of the study was to select the optimal composition for
the gel phantom formation and evaluate the effect of the phantom matrix on the release rate of rilpivirin used as a model drug from the
PLGA ISFI. According to the results of the study, a 1% agarose gel was the best suited for a tissue phantom preparation and implant
formation. It was also shown that the release profile of rilpivirin from the ISFI matrix depended on how the implant was formed (in a
gel or freely in buffer). In the case of a phantom, the structure of the implant was less porous and retained its shape for 28 days of
incubation at 37 °C. During this period, the ISFI formed in an agarose gel released considerably less rilpivirin compared to the ISFI
formed without gel (11% vs 80%).
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an important role in the drug release from ISFI but

Introduction . . .
also the physical structure and tissue stiffness are

In situ forming implants (ISFI) occupy important [7]. Thus, the use of hydrogel phantoms
a special place among the various injectable depot that mimic muscle tissue to simulate in vivo condi-
formulation, due to their important advantages: tions and to improve the in vitro-in vivo correlations
simple manufacturing technology (afew steps, (IVIVC) was proposed in some studies [6, 8, 9].
simple and inexpensive equipment) and less inva- Therefore, one of the objectives of the pre-
sive administration procedure based on introducing sent study was to choose a composition for the for-
a liquid biodegradable and biocompatible compo- mation of a gel phantom that satisfy the following
sition through a small needle thus avoiding micro- necessary requirements: (1) elastic modulus of the
surgery. Phase-sensitive ISFI is a low viscous so- gel must correspond to the elastic modulus of mus-
lution comprising both the drug and the polymer in cle tissue, which is in the range from 15 to 34
a biocompatible water_-miscible organi(_: solvent kPa [10], (2) rapid gelation (or easy sample prepa-
such as N-methylpyrrolidone (NMP), which forms ration), (3) possibility of introducing a viscous pol-
a solid Implant fOIIOWing intramuscular or subcu- ymer solution into the phantom and (4) formation
taneous injection as a result of the phase inversion of an implant inside the gel. Another objective of
process [1-5]. To date such ISFIs have been used the study was to evaluate the influence of the gel
successfully in commercial applications for the phantom on the drug release rate from the ISFI us-
treatment of various diseases: prostate cancer (Eli- ing rilpivirine as a model drug.

gard® ), central precocious puberty (Fensolvi® ),

opioid dependence (Sublocade™), schizophrenia Materials and Methods

(Perseris™). One of the main parameters of depot Chemicals. Rilpivirine (RPV) was obtained
formulations is the drug release rate from the car- from Lomonosov Moscow State University,
rier matrix. Nevertheless, current methods in vitro Russia; poly(lactic-co-glycolic acid) (PLGA, Pura-
employed for evaluation of the release kinetics do sorb® PDLG 5004, LA/GA ratio of 50:50, ester end-
not always substitute for the animal experi- capped, n= 0.41 dL/g, Corbion, The Netherlands);
ments [6]. For example, it was shown that not only N-methyl-2-pyrrolidone (NMP, Sigma, Germany);
the chemical composition of the injection site plays buffer solutions were prepared using PBS tablets
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(MP Biomedicals, LLC, USA); polysorbate 20
(Tween 20® ) and trifluoroacetic acid (TFA) suit-
able for HPLC (Sigma, USA);, acrylamide (AAm)
and N, N'-methylenebis(acrylamide) (MBA) (Acros
Organics, Belgium), ammonium persulfate (APS)
(Applichem, Germany); tetramethylethylenedia-
mine (TEMED) and agarose (gel point, 34.5-37.5 °C)
(Sigma, USA); acetonitrile (HPLC grade, Chem-
lab, Belgium).

Preparation of ISFI formulations. RPV (12 mg)
was dissolved in 12 mL of NMP. Then, PLGA (440
mg) was added to this solution. The components
were dissolved by continuous mixing at room tem-
perature to form homogenous mixtures. The final
drug loading of RPV in RPV-polymer solution was
2.7% (w/w PLGA).

High-pressure  liquid  chromatography
(HPLC). The assay of RPV was performed using a
reverse phase HPLC method. The HPLC analysis
was carried out with a LC-2030C 3D Plus HPLC
system (SHIMADZU, Japan) equipped with a Pho-
todiode Array (PDA) Plus Detector, a C18 pre-col-
umn and a Purospher® STAR RP-18 endcapped
column (120 + 4 mm, 3 um). The mobile phase
consisted of 0.1% TFA in water (solvent A) and
0.1% TFA in acetonitrile (solvent B) delivered at a
flow rate of 1 mL/min. A gradient elution was ap-
plied from 10% to 60% solvent B at 25 min. Col-
umn oven was set at 35 °C, injection volume was
20ul, and the analysis was carried out at 280 nm.

Phantom preparation and characterization.
Polyacrylamide gels PAA_1, PAA 2,and PAA 3a
were obtained by radical copolymerization of AAm
(31%, 32%, and 11%) and MBA as a crosslinking
agent (2.7%, 1.4%, 20% relative to AAm concen-
tration) with redox initiation using TEMED
(0.02%, 0.02, 0.1%) and APS (0.02%; 0.02%, 0.1%)
in PBS solution followed by incubation of the mix-
ture at room temperature for 24 h. The resulting
hydrogels were washed with water for 3 days
(water was changed three times per day). Cryogel
PAA_3b was synthesized according to the proce-
dure from [11]. A solution of AAm (11%), MBA
(20% to AAm concentration) and TEMED (0.1%)
in phosphate buffer (pH 7.4) was cooled to 7 °C,
then an APS solution (0.1%) cooled to 7 °C was
added to initiate polymerization. The solution was
then quickly poured into a mold and placed in a —
25 °C freezer for 24 h. Young's modulus of phan-
toms was determined by mechanical testing using
a RheoStress RS600 rheometer (Thermo HAAKE,
USA). The microstructure of gels and ISFI was
evaluated by SEM (JSM-6510LV microscope,
JEOL Ltd, Japan).
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Incorporation of the ISFI formulations into
agarose gel. 1% (w/v) agarose gel was produced as
described in [12]. Briefly, 2 ml of a 1% (w/v) gel
solution was transferred to the mold and cooled on
ice. Before the phase transition of agarose was
complete, 0.2 ml of the RPV-polymer solution was
injected into a cavity made in the upper layer.
A warm 1% agarose solution was carefully added
on the surface of the solution after 30 sec. The re-
sulting phantom was cooled at 4 °C for 10 min.

Evaluation of RPV release. The release me-
dium consisted of 2% w/v Tween 20 in 0.15 M
PBS at pH 7.4. The release of RPV from ISFI for-
mulations was evaluated by injecting 0.2 ml of the
RPV-polymer solution or by placing agarose phan-
tom with ISFI into 150 ml of release medium and
further incubation under the sink conditions at
37 °C with continuous shaking (200 rpm, orbital
shaker-incubator ES-20, Biosan, Latvia). Then 500 uLL
samples were taken at predetermined time intervals
(30 min, 1, 2, 3, 5, 7, and 24 h, and then on daily
basis). The concentration of the released RPV was
measured by HPLC. All experiments were per-
formed in triplicate.

Hydrolytic degradation of ISFI. The kinetics
of ISFI degradation was studied using the capillary
electrophoresis (CE) system CAPEL-105 M (Lu-
meX, Russia) equipped with a spectrophotometric
detector and a quartz capillary tube (i.d. 75 mm,
e.l. 50 cm, t.I. 60 cm) and Elforun software (Lumex,
Russia). After ISFI formation, the aliquots were taken
at predetermined time intervals (1, 2, 3 day, etc.).
All products of the hydrolytic degradation in the
supernatants (100 ul) were further hydrolyzed by
addition of 10 ml of 1 N NaOH, and the resulting
concentration of lactic acid was measured by CE at
254 nm as described in [13]. All experiments were
performed in triplicate.

Results
Polymer phantoms formation

Polyacrylamide gels were prepared by varying
the concentration of AAm and MBA in phosphate
buffer (PAA_1, PAA 2, and PAA _3a) and by a
cryogelation technique (PAA_3b). The appearance
and shape of polyacrylamide gels are shown in Fig-
ure 1A. The phantoms differed in the Young's mod-
ulus (6.13 kPa, 8.6 kPa, 8.9 kPa, and 9.59 kPa for
for PAA_1, PAA 2, PAA_3a, and PAA_3b, re-
spectively) and the degree of porosity (Fig.1B). 1%
agarose gel with an elastic modulus of 11.38 kPa
was also obtained.
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Figure 1. A) Appearance of the phantoms (from left to right): PAA_1, PAA_2, PAA 3a, PAA 3b and agarose gel; B)
SEM image of standard polyacrylamide gels (left) and cryogel phantoms (right); C) Introduction of the PLGA solution
into the gel. Compiled by the authors

ISFI formation in polymer phantoms a period of a slower RPV release (lag-phase), and
Rhodamine 6G was added to the PLGA then rapid RPV release period or the second burst
solution for visual assessment of the implant (after 20 days) (Fig.2A). The initial 24-h release
formation in the phantom. It was found that the pol- of RPV was 24.43 & 1.73%, whereas after 28 days
ymer solution was introduced only into the agarose of incubation the ISFI released 81.76 + 6.16%
gel during its gelation. In all other cases, when the of RPV. Slower RPV-release from the ISFI formed
polymer composition was injected through the 18G in agarose gel, compared to ISFI formed without a
needle, the viscous solution came out through the phantom was observed in the gel conditions (Fig.2A).
hole from the needle (Fig.1C) The overall release at the end of the 28-day study
. was 11.02 + 0.34%. Implants formed without a
In vitro RPV release from the ISFI phantom visually had a larger surface area and a
The ISFIs formed without a phantom large volume, and had a distinct macroporous
showed a triphasic RPV release profile: burst structure (Fig.2B).

release during the first 24 h, then from 1 to 18 days

Afreely in buffer
< in agarose gel
% degradation of PLGA

Drug release (%)
PLGA release (%)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Time after implant formation (day)

Figure 2. A) Release profiles of RPV from ISFI (n = 3) and hydrolytic degradation profiles of PLGA from ISFI formed
freely in buffer (n = 3); B) SEM images highlighting the difference in microstructure for ISFI formed freely in buffer and
in an agarose phantom. Compiled by the authors

Discussion it was impossible to inject the polymer solution into
the phantom. However, rapid gelation of the aga-
rose gel (15 min), in comparison with polyacryla-
mide gels (24 h), allowed for a cavity formation
in the phantom for the introduction of a polymer
solution. Another disadvantage of polyacrylamide
gels is the need for thorough continuous washing to
remove toxic acrylamide. Therefore, a 1% agarose
gel was chosen as a model phantom to evaluate its
effect on the RPV release rate from ISFI.

The use of hydrogels as a tissue model for
evaluation of the drug release from ISFI has been
described previously [8, 14-17]. In these studies,
the hydrogel completely replaced the biorelevant

Polyacrylamide and agarose gels were used
to phantoms phormation. All gels participating
in the experiment were characterized by elasticity
in the range from 6 to 11 kPa. The cryogels were
characterized by macropores [11]. However, ac-
cording to the SEM images (Fig. 1B) the micro-
structure of standard gels and cryogels was similar:
all gels had highly developed porosity with a pore
size of ~ 3 um. The cryogel contained also
macropores, but in small amounts. We assume that
the absence of obvious differences in the structure
is due to the high content of monomers in the reac-
tion solution. Despite the porosity of the gels,
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medium. In our study, the main release medium
was a buffer solution, into which a cylindrical
phantom with an implant was placed. Due to this
approach it was possible to avoid disruption of the
gel structure during sampling, to replace the release
medium if necessary, and to avoid an additional
step of sample preparation for the analysis of the
released RPV. Importantly, the ISFI formed with-
out phantom (freely in buffer) and in agarose phan-
tom demonstrated the distinct drug release profiles
(Fig.2A). Thus, after 28 days of incubation the ISFI
formed in a 1% agarose gel released ~11% of RPV
as compared with 80% of RPV released without
phantom. As previously observed [18], in bulk
release models the mass transfer into the release
medium is carried out mainly due to convective
transport, while in the gel phantom mass transfer
is controlled by diffusion as in vivo. Therefore, the
RPV release rate in the gel phantom is significantly
lower. It is important that when ISFI formed without a
phantom, the RPV release profile from the implant
is characterized by two burst-effects (Fig. 2A).
A first burst release occurs as a result of the drug
desorption and diffusion from the surface [19, 20].
This burst-effect is absent in the release profiles of
RPV from ISFI formed in an agarose gel. Feasibly,
it disappears due to the slow diffusion of RPV
in the gel phase. The second burst-release of RPV
is significant (from 30 to 80% of released RPV)
and related to the onset of “erosion” of the polymer
matrix and faster degradation of PLGA (Fig.2A).
It should be noted that morphological differences
in the structure were observed for the two studied
implants. The ISFI formed in an agarose gel ini-
tially had a less porous and denser microstructure

post@vestnik-vsuet.ru

(Fig. 2B), which could inhibit the penetration
of water into the matrix, thereby slowing down
the hydrolysis rate of polymer chains and the RPV
release from the implant. It may be an additional
explanation for the absence of the second burst-
effect in a release profile of RPV from the ISFI
formed in the agarose gel. The ISFI, formed with-
out phantom, being more porous, quickly swelled,
lost their shape, and began to disintegrate, which
complicates a long-term experiment in the study
of the kinetics release from depot formulations.

Conclusion

The phantom based on 1% agarose gel is
the best suited for simulating muscle tissue to study
the RPV release profile from the ISFI. The release
profiles of RPV from ISFI formed in a phantom
was characterized by the absence of burst-effects
observed under the typical release conditions using
liquid media. In addition, the ISFI formed in an
agarose gel exhibited significantly slower release
of RPV (11% vs 80% during 28 days), which is ex-
plained by the fact that in this case the RPV release
was controlled by diffusion transport, as in vivo.
Another advantage of gel tissue phantoms is their
ability to maintain the ISFI structure during contin-
uous experiments.
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N3yuenne BbICBOOOKICHUS PUJINIMBUPUHA U3 in situ
(popMupyOIIMXCH MOJUMEPHBIX UMILIAHTATOB B 0y(pepHOM pacTBOpe
U B reJieBOM (paHTOMe, MMUTHPYIOIIEM MbBIIIEYHYI0) TKAHb

AnHoTanus. Pa3paboTka in situ GopMHUPYIOIIUXCS HMIUIAHTATOB HA OCHOBE COMOJMMEPOB MOJIOYHOH U riHKoneBoi kuciotr (CMI'K)
SBIISIETCS. OHUM U3 HauOoJee IIepCIIeKTHBHBIX MOAXO0/I0B IPH CO3JaHUN HHBEKIMOHHBIX JICKAPCTBEHHBIX ()OPM AIUTEIHHOTO ACHCTBHSL.
IIpu >TOM, IS OIEHKHM CKOPOCTH BBICBOOOXKACHUSI JICKAPCTBEHHOTO BEIIECTBA M3 TAKUX HEMO-(OpM TpeOyIOoTCsS METOABI, KOTOpHIE
CITIOCOOHBI HanboJiee TOYHO MOZIENMPOBATh YCIOBUS in vivo. ['eneBble (haHTOMBI, IMHTHpPYIOIINE SJIACTUYHBIE CBOWCTBA MBIICYHON
TKaHHW, MOTYT CTaTh MHOTOOOEINAOIIeH albTepHATHBON TPaJUIMOHHBIM METOJaM H3y4YeHUS BBICBOOOXKICHUS, HCIIONB3YIONIMM B
KauecTBe Cpelbl (pU3HOJOrHYeCKH 3HaYMMble OydepHble pacTBOpBI. Tak, LENbl0 HUCCIeNOBaHMS ObLT BHIOOP ONTHMAIBHOIO COCTaBa
THAPOTeNs, MOAXOJSINEro Ul HCIONB30BaHHMsS B KauecTBe (aHTOMa, M OLCHKA BIWSHHS (DaHTOMHOM MAaTpHIBI HAa CKOPOCTh
BBICBOOOXK/ICHHUSI PUIIIMBUPHHA, HCIIONB3YeMOro B KadecTBe MoxenbHoro Beutectsa, 13 CMIK in situ ummanrartos. Ilo pesymnsratam
UCCJIC/IOBAHUS YCTAHOBJICHO, YTO JUIS IOJIYYeHHS TKaHEBOro (paHToMa M GOpPMUPOBAHHUS B HEM HMILIAHTATA JIydlle Bcero noaxoaui 1 %
arapo3Hslii resb. Takke ObUIO MOKa3aHO, YTO MPOQUITH BBICBOOOKICHHS PHIIIMBUPHHA U3 iN SitU (JOPMHUPYFOIIMXCS MMIITAHTATOB 3aBHCEI
OT TOT0, KaKuM 00pa3oM ObUT chopMUpPOBaH MMILIAHTAT (B Telie win cBoOOIHO B Oydepe). B cmydae dopmupoBaHus UMIDIaHTaTa B
THApOreIeBoM (aHTOME CTPYKTypa UMIUIaHTaTa ObUTa MEeHee MOPHCTOH U coxpaHsuia GpopMy B TedeHue 28 nuei nHKyOanuu npu 37 °C.
B Teuenme sToro mepuosa MMIUIAHTAT, COPMHUPOBAHHBEIN B arapo3HOM Trele, BBHICBOOOXKIAN 3HAYUTEIGHO MEHbIIEe KOJIMIECTBO
PUITHBHPHHA [0 CPABHCHHIO C MMILIAHTATOM, chopmupoBaHHbIM Oe3 renst (11 % npotus 80 % priIIuBUPHHA).
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