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Аннотация. В статье рассматриваются подходы к математическому моделированию процесса синтеза бутадиен-стирольных статистических 

сополимеров (ДССК), полученных растворной полимеризацией в присутствии инициирующей системы «литийалкил-модификатор». 
Объектом исследования являлся функционализированный статистический бутадиен-стирольный каучук ДССК-2560Ф, полученный 

сополимеризацией бутадиена-1,3 со стиролом периодическим способом, при этом инициирующий комплекс «н-бутиллитий + модификатор» 

образуется в режиме in situ в присутствии мономеров. Процесс синтеза сополимера проводили при постоянной температуре. Конверсию 
мономеров определяли методом сухого остатка. С учетом того, что статистическое распределение стирола в сополимере определяется 

соотношением Ме/Li в инициирующей системе, разработана кинетическая схема процесса синтеза статистического бутадиен-стирольного 

каучука.  Для предложенной кинетической схемы представлена система бесконечных дифференциальных уравнений. С использованием 
метода моментов бесконечная система уравнений сведена к конечной. С использованием полученной системы уравнений проведена оценка 

степени превращения мономеров, значений среднечисленной, среднемассовой молекулярной массы и коэффициента полидисперсности в 

зависимости от условий синтеза в периодическом процессе.  Кинетические параметры модели оценены с использованием процедур 
нелокальной оптимизации. В результате идентификации параметров математической модели рассчитаны значения констант скоростей 

элементарных реакций. Получены аналитические зависимости, описывающие влияние температуры полимеризации на степень конверсии и 

молекулярно-массовые характеристики каучука.  Разработанная математическая модель может быть использована в технологии получения 
растворных бутадиен-стирольных статистических сополимеров, где в качестве инициирующей системы выступают алголят натрия и н-

бутиллитий. Применение разработанной математической модели позволит установить влияние технологических параметров (температуры, 

соотношения компонентов инициирующей системы) на молекулярно-массовые характеристики получаемого каучука. 

Ключевые слова: сополимеризация, математическая модель, кинетика полимеризации, конверсия, бутадиен-стирольный каучук, модификатор 
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Abstract. The article considers approaches to mathematical modeling of the synthesis of butadiene-styrene random copolymers (DSSK). These rubbers 

are obtained by solution polymerization in the presence of an alkyl lithium modifier initiating system. The object of the study was the functionalized 

random butadiene-styrene rubber DSSK-2560F. The rubber was obtained by copolymerization of butadiene-1,3 with styrene in a periodic manner. The 
initiating complex (n-butyl lithium + modifier) is formed in situ in the presence of monomers. The synthesis temperature was constant. The conversion 

of monomers was determined using the dry residue method. It was taken into account that the random distribution of styrene in the copolymer is 

determined by the Me/Li ratio in the initiating system. A kinetic scheme for the synthesis of random butadiene-styrene rubber has been developed. A 

system of infinite differential equations is presented for the proposed kinetic scheme. Using the method of moments, an infinite system of equations is 

reduced to a finite system of equations. The degree of monomer conversion, the values of the number-average and weight-average molecular weight, 

and the polydispersity coefficient are estimated depending on the synthesis conditions under batch conditions. The kinetic parameters of the model are 
estimated using nonlocal optimization procedures. The values of the rate constants of elementary reactions are calculated. Analytical dependences of 

the effect of polymerization temperature on the degree of conversion and molecular weight characteristics of the rubber are obtained. The developed 

mathematical model can be used in the technology of producing solution-based butadiene-styrene random copolymers, where sodium alcoholate and n-
butyl lithium act as the initiating system. Application of the developed mathematical model will allow us to determine the influence of process 

parameters (temperature, ratio of components of the initiating system) on the molecular weight characteristics of the resulting rubber.. 
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Введение 

При производстве «зеленых» шин нашли 

применение бутадиен-стирольные каучуки ани-

онной полимеризации (ДССК), в особенности 

с функциональными группами в «голове» и «хво-

сте» полимерной цепи, применение которых 

обеспечивает получение шин с высоким сцепле-

нием с сухим и мокрым дорожным покрытием, 

а также с улучшенными показателями устойчи-

вости против заноса без повышения сопротивле-

ния качению и снижения износостойкости [1–2]. 

Согласно последним данным 58% миро-

вого использования ДССК приходится на шинную 

промышленность, а ужесточение требований 

к зимним шинам приведет к увеличению ис-

пользования ДССК еще на 20% [3]. Растущий 

спрос автомобильного сектора на высокоэф-

фективные шины обусловлен потребностью 

в снижении сопротивления качению при ис-

пользовании в протекторных резинах ДССК 

в сочетании с диоксидом кремния. В этой связи 

особую актуальность приобретают исследова-

ния, направленные на установление оптималь-

ного сочетания между основными эксплуатаци-

онными характеристиками шин, например, 

для снижения сопротивление качению необхо-

димо применение каучуков с высокими показа-

телями эластичности по отскоку, в то же время 

показатели устойчивости при движении  

по мокрой дороге, которые являются результатом 

высокочастотного деформирования скользя-

щей поверхности, определяются гистерезис-

ными свойствами протекторных резин [4–6]. 

Поэтому в составе протекторных резиновых 

смесей применяются разные марки каучуков, 

в том числе ДССК для достижения баланса 

между такими противоречивыми характеристи-

ками, а также для возможности регулирования 

молекулярно-массовых характеристик и коли-

чества 1,2 – звеньев бутадиеновой части сопо-

лимера, что влияет на температуру стеклования 

и степень разветвленности макромолекул. 

В настоящее время главной задачей явля-

ется оптимизация этих характеристик с целью 

улучшения комплекса эксплуатационных свойств 

протекторных резин на его основе, одним из 

путей решения которой является функционали-

зация каучука. Получение функционализиро-

ванных полимеров возможно с применением 

аминосодержащих инициаторов, которые обра-

зуются в результате взаимодействия н-бутил-

лития и модификатора, содержащего в своем 

составе ˃NH группу [7]. Таким образом, часть 

полимерных цепей содержит в «голове» аминную 

функциональную группу. 

Математическое моделирование процессов 
полимеризации и сополимеризации играет важ-
ную роль в изучении различных аспектов 
их протекания, а, соответственно, и в оптимиза-
ции рассматриваемых процессов. Исследования 
на основе построения математической модели 
ориентированы на вычисление характеристик 
формируемого сополимера и продукта, получае-
мого на его основе, на поиск режимов оптимиза-
ции управления параметрами процесса и анализ 
их взаимного влияния в условиях промышлен-
ного производства [8–10]. 

Цель исследований – разработка мате-
матической модели статистической сополиме-
ризации бутадиена со стиролом в присутствии 
инициирующей системы «литийалкил-модифика-
тор», позволяющей установить влияние технологи-
ческих параметров – температуры, соотношения 
компонентов инициирующей системы –  
на молекулярно-массовые характеристики  
получаемого каучука. 

Материалы и методы 

Объектом исследования являлся функци-
онализированный статистический бутадиен-
стирольный каучук ДССК-2560Ф, полученный 
сополимеризацией бутадиена-1,3 со стиролом 
в атмосфере азота в гексановом растворителе. 
Синтез опытных образцов ДССК2560Ф осу-
ществляли периодическим способом в реакторе 
емкостью 13 л, снабженном мешалкой, рубаш-
кой для теплоносителя, системой дозирования 
компонентов и выгрузки полимера. В качестве 
растворителя использовали Нефрас П1–65/75. 
В реактор загружали шихту с концентрацией 
мономеров 13 ± 1%, затем подавали последова-
тельно модификатор и н-бутиллитий. Иниции-
рующий комплекс «н-бутиллитий + модифика-
тор» образуется в режиме in situ в присутствии 
мономеров. Процесс синтеза сополимера прово-
дили при постоянной температуре. Конверсию 
мономеров определяли методом сухого остатка. 

Результаты и обсуждение 

При анионной сополимеризации с ис-
пользованием литийорганических инициаторов 
в сочетании с алкоголятами щелочных и ще-
лочноземельных металлов можно получать  
линейные полимеры с узким ММР и заданной 
молекулярной массой. Введение модификато-
ров резко повышает скорость полимеризации 
бутадиена и стирола, которая зависит от темпера-
туры процесса, типа мономера, природы щелоч-
ного металла, молярного отношения компонентов 
инициирующей системы [7, 11]. Алкоголяты 
металлов (соединения типа R-ОМе) при добав-
лении в небольших количествах к алкиллитию, 
обеспечивают образование статистического  
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сополимера, при этом структура бутадиеновой 
части меняется незначительно [12]. При использо-
вании инициатора, который представляет собой 
смесь алкиллития и алкоголята щелочного металла, 
центр роста цепи находится в динамическом тауто-
мерном равновесии с двумя металлами, стати-
стическое распределение стирола в сополимере 
определяется соотношением Ме/Li в иницииру-
ющей системе [13]: 

 

где P – полимерная цепь, Ме – катион металла 

(натрия, кальция), R – аллил. 

Кинетическую схему процесса можно 

представить как: 
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где B – бутадиен, St – стирол, LiBu-н – бутиллитий. 

Предложенной кинетической схеме соот-

ветствует бесконечная система дифференци-

альных уравнений (2). Бесконечную систему 

дифференциальных уравнений можно свести 

к конечной (3), используя метод моментов [14]. 
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Начальные условия определены как: 
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k
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k

k

k NaP =  

В результате получена система (3), состо-

ящая из шести дифференциальных уравнений 

с пятью неизвестными константами ki, i = 1,5. 

С использованием полученной системы уравнений 

можно оценивать степень превращения мономеров 

(x) и значения среднечисленной (Рn), среднемассо-

вой (РW) степени полимеризации и коэффициента 

полидисперсности (Кn) в зависимости от условий 

синтеза в периодическом процессе: 
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Параметрическая идентификация модели 

сводилась к оценке значений 5 констант. Уста-

навливали зависимость суммарной степени 

превращения бутадиена и стирола от времени 

полимеризации при известных значениях концен-

трации мономеров и инициатора (LiBu и MeOR). 

Кинетические параметры оценивали с ис-

пользованием процедур нелокальной оптими-

зации [14]. В качестве критерия минимизации 

использован модульный критерий: 

 
эксп расч

   1

–
n

i i

i

x x min
=

→   

где n – количество экспериментальных точек. 

В результате идентификации математи-

ческой модели получены следующие значения 

параметров (константы скоростей элементарных 

реакций), представленные в таблице 1. 

Таблица 1.  

Значения констант скоростей элементарных 

реакций (дм3/ моль ·мин) 

Table 1. 

Rate constants of elementary reactions 

(dm3/mol×min) 

Т, K k 1 k 2 k 3 k 4 k 5 

313 24,07 226,14 240,32 552,53 1,78 
333 360,92 291,52 480,92 3358,54 8,24 

 

Константы скоростей элементарных реак-

ций описываются согласно закону Аррениуса: 

 
( )–

0

Ej
RT

jK K je=  (9) 

где K0j – предэкспонента; Еj – энергия активации 

реакции; R – универсальная газовая постоянная. 

Получены следующие значения: 

E1 =115,28 кДж/моль; E2 = 109,82 кДж/моль; 

E3 = 32,18 кДж/моль; E4 = 72,22 кДж/моль; 

E5 = 65,36 кДж/моль. 

Применимость полученной математиче-

ской модели оценивалась путем сравнения  

экспериментальных данных конверсии с соответ-

ствующими характеристиками, полученными 

по модели. 

На рисунках 1–2 представлены эксперимен-
тальные данные и результаты вычислительного 
эксперимента по модели для следующего набора 
исходных данных: температура синтеза Т = 313 К; 
концентрация стирола [St]0 = 0,41 моль/дм3 кон-
центрация бутадиена [В]0 = 0,95 моль/дм3; концен-
трация н-бутиллилия [LiBu]0 = 1,37×10-3 моль/дм3; 
концентрация модификатора [NаОR]0 = 
=8,55×10-5 моль/дм3; сухой остаток G0 = 15,3% мас. 
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Рисунок 1. Кинетика сополимеризации бутадиена 
со стиролом и результаты вычислительного 
эксперимента по модели синтеза ДССК-2560Ф: 1, 2- 
изменение концентрации бутадиена [B] от времени τ; 
3, 4 – изменение концентрации стирола [St] от времени τ; 
1, 3 – расчет; 2, 4 – эксперимент 

Figure 1. Kinetics of copolymerization of butadiene with 
styrene and results of computational experiment using the 
model: 1, 2 – change in butadiene concentration [B] over 
time τ; 3, 4 – change in styrene concentration [St] over 
time τ; 1, 3 – calculation; 2, 4 – experiment 

 
τ, min 

Рисунок 2. Зависимости изменения конверсии (x) 
от времени синтеза (τ) каучука ДССК-2560Ф:  
1 – эксперимент; 2 – расчет 

Figure 2. Dependences of the change in conversion (x) 
on the synthesis time (τ) of rubber DSSK-2560F:  
1 – experiment; 2 – calculation 

 

Средняя ошибка отклонения расчетных 
значений степени превращения мономеров 
от экспериментальных не превышает 5% отн., 
что с одной стороны не превышает точности 
измерения данной величины, а с другой – это 
отклонение обусловлено нарушением изотермич-
ности процесса и наличием неконтролируемых 
возмущений, воздействующих на процесс. 
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Результаты исследования влияния темпе-

ратуры полимеризации на кинетику процесса 

и параметры молекулярно-массового распреде-

ления (Pn, Pw, Kr) представлены в таблице 2. 

Таблица 2.  

Влияние температуры полимеризации 

на степень конверсии и молекулярные 

параметры каучука ДССК-2560Ф  

Table 2. 

The influence of polymerization temperature on 

the degree of conversion and molecular 

parameters of rubbеr DSSK-2560F 

T, K τ x, % Pn×10-3 Pw×10-3 Kn 

313 100 50 1,7 2,9 1,7 

323 100 88 2,9 3,8 1,3 

333 47 100 3,3 4,4 1,3 

343 13 100 3,3 5,2 1,6 

353 10 100 3,3 6,2 1,9 

 

Полученные данные свидетельствуют 

о том, что с ростом температуры наблюдается 

существенное повышение скорости процесса 

и выравнивание скоростей расходования бута-

диена и стирола. Оптимальной температурой 

с точки зрения одновременного исчерпания бу-

тадиена и стирола является температура 343 К. 

Одновременно с ростом температур происходит 

возрастание среднемассовой и среднечисленной 

степеней полимеризации, коэффициент же поли-

дисперсности в диапазоне температуры [313÷333 К]  

падает, а затем возрастает в диапазоне [313÷333 К]. 

Заключение 

Разработана математическая модель со-

полимеризации бутадиена со стиролом в при-

сутствии инициирующей системы «н-бутилли-

тий + модификатор» при получении каучука 

ДССК-2560Ф. Кинетические параметры системы 

оценены с использованием процедур нелокальной 

оптимизации, преобразование бесконечной системы 

дифференциальных уравнений осуществлено с ис-

пользованием метода моментов. 

Разработанная модель может быть ис-

пользована для имитационного моделирования 

с выбором оптимальных параметров процесса 

в технологии получения растворных бутадиен-

стирольных статистических сополимеров, где 

в качестве инициирующей системы выступают 

алголят натрия и н-бутиллитий. 
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