УДК 664.1.03

Профессор В.А. Лосева, аспирант К.В. Голова, студент О.Э. Новотоцких,

(Воронеж. гос. ун-т. инж. технол.) кафедра технологии. сахаристых веществ, тел. (473) 255-07-51

доцент Л.А. Черняева

(Воронеж. гос. ун-т инж. технол.) кафедра микробиологии и биохимии, тел. (473) 255-55-57

Удаление микробной загрязненности на стадии предварительной очистки диффузионного сока

Изучена степень удаления микроорганизмов из свекловичного сока с использованием в качестве сорбентов пищевых волокон и фильтровальных порошков.

In experimental studies investigated the degree of removal of microorganisms using beet juice as a dietary fiber sorbents and filter powder.

Ключевые слова: микроорганизмы, адсорбция, пищевые волокна, сорбенты.

В сахарном производстве микроорганизмы – бактерии, плесневые грибы и дрожжи – являются вредителями производства. Они снижают качество полупродуктов и готовой продукции, образуют кислоты, вызывают разложение сахарозы и ослизнение соков и сиропов, ухудшают процесс фильтрования, причиняя большой ущерб производству [1].

Микробиологическое разложение сахарозы является основным источником неучтенных потерь сахара на диффузии, величина которых составляет примерно 0,1~% к массе свеклы. В зависимости от степени инфицирования среды в диффузионном аппарате эти потери могут увеличиться до 0,2-0,3~% к массе свеклы и выше [2].

Количество микроорганизмов в 1 см³ диффузионного сока колеблется от 6 тыс. до 40 млн. Постоянным это число быть не может, т.к. обсемененность диффузионного сока зависит от состояния свеклы, степени отмывки от нее почвы, бактериологического качества воды, температурного режима, ритма работы диффузионного аппарата.

В диффузионном соке особенно часто обнаруживаются спорообразующие бактерии рода *Bacillus* и *Clostridium*. Их жизнедеятельность проявляется в разложении сахарозы, образовании инвертного сахара, накоплении органических кислот, уксусного альдегида, образовании газов (CO_2 , H_2) и нитритов. Некоторые виды бактерий разлагают белки свекловичной

Хотя количество микроорганизмов неустойчиво и находится в зависимости от многих причин и факторов, необходимо стремиться снизить его до минимального.

Важным процессом в технологии очистки диффузионного сока является предварительная дефекация. В условиях преддефекации протекают реакции коагуляции веществ коллоидной дисперсности (ВКД) и высокомолекулярных соединений (ВМС), нейтрализация и осаждение кальциевых солей некоторых кислот, формирование структуры осадка, а также адсорбция микроорганизмов на осадке.

Цель работы — изучение степени удаления микроорганизмов пищевыми волокнами (ПВ), а также комбинированными сорбентами на основе ПВ и фильтроперлита, ПВ и бентонита на стадии преддефекации.

Известно, что при введении фильтровальных порошков в свекловичный сок мельчайшие частицы порошка задерживают все суспендированные в соке частицы, обволакивают слизистые осадки, а также являются центрами для коагуляции высокополимеров [4].

стружки с выделением аммиака. Значительную опасность представляют слизеобразующие бактерии рода *Leuconostoc*. При их размножении диффузионный сок ослизняется, становится вязким, студенистым, с трудом продвигается в аппаратах, плохо фильтруется. Молочнокислые бактерии рода *Lactobacillus* разлагают сахара с образованием кислот. Значительное количество сахара потребляют в процессе диффузии и дрожжи: *Saccharomyces cerevisiae*, *S. Fragilis*, *Endobiasiomyces thermophiles* [3].

[©] Лосева В.А., Голова К.В., Новотоцких О.Э., Черняева Л.А. 2012

Анализу подвергали исходный свекловичный и преддефекованный сок, очищенный по традиционной схеме, а также с добавлением ПВ, фильтроперлита и бентонита.

Исследования проводили с использованием ПВ и фильтровальных порошков (фильтроперлита и бентонита) по следующей методике: полученный в лабораторных условиях свекловичный сок разделяли на пять проб, в первую пробу вводили определенную навеску ПВ, во вторую – ПВ и фильтроперлит, в третью – ПВ и бентонит. Сок предварительно был температуры преддефекации нагрет ДО 55 - 60 °C. Навески сорбентов с соком перемешивали при постоянной температуре в течение 6 мин, далее сок отфильтровывали и проводили прогрессивную преддефекацию по традиционной схеме. Для сравнения была проведена очистка сока по традиционной схеме без использования сорбентов. Преддефекованный сок фильтровали и анализировали.

Образцы сока высевали на среду «мясопептонный агар» (МПА) и выдерживали в термостате в течение 48 – 72 ч при температуре 28 - 30 °C, определяли количество мезофильных аэробных и факультативноанаэробных микроорганизмов (МАФАнМ). Все эксперименты проводили с необходимой повторностью (табл. 1).

В работе использовали свекловичный сок из свеклы, не подверженной кагатной гнили. Из слизеобразующих идентифицированы бактерии рода Leuconostoc и Bacterium viscosum saccari. Микрококки представлены пречимущественно видами M. coralinus и M. luteus. В результате исследований было выявлено, что в схеме с использованием только ПВ количество МАФАнМ сократилось в 3,5 раза по сравнению с традиционной схемой очистки; ПВ и бентонита — в 4 раза; ПВ и фильтроперлита — в 7 раз.

С целью определения характера влияния используемых сорбентов на степень очистки преддефекованного сока были проведены дополнительные исследования. В очищенном преддефекованном соке находили содержание сухих веществ, сахарозу, рассчитывали чистоту и эффект очистки (табл. 2).

Как видно из результатов, представленных в табл. 2, чистота преддефекованного сока при использовании ПВ увеличивается на 0,8 % по сравнению с традиционной схемой очистки, ПВ и бентонита — 1,06 %, ПВ и фильтроперлита — 1,58 %.

Таблица 1

Микробиологические показатели преддефекованного сог							
	Количество микроорганизмов,						
Объекты	KOE/cm ³						
исследова-	МАФАнМ	Слизеоб-	Мик-	Pseudo-			
ния		разующие,	рокок-	monas			
		В Т. Ч.	ки	fluo-			
		Leuconos-		rescens			
		toc					
Диффузион-	$1330 \cdot 10^2$	$450 \cdot 10^2$	$730 \cdot 10^2$	$150 \cdot 10^2$			
ный сок							
Преддефеко-							
ванный сок:							
традицион-							
ная схема							
очистки	410	150	260	-			
ПВ+фильтро							
-перлит	60	10	50	-			
ПВ+							
бентонит	100	40	60	-			
ПВ	110	25	85	-			

Таблица 2

Качественные показатели преддефекованного сока до и после обработки сорбентами

до и после обработки сорбентами						
Объекты		Показатели, %				
исследования	pН					
		CB	Ч	Эф. оч.		
Диффузионный		14,0	88,0			
сок						
Преддефекованный сок						
Традиционная		16,0	89,0	9,36		
схема						
ПВ не обрабо-		16,0	89,8	16,70		
танные	11,2					
ПВ с фильтро-		15,4	90,58	23,74		
перлитом						
ПВ с бентонитом		15,6	90,06	19,06		

Таким образом, обработка сока указанными сорбентами позволяет не только более полно провести реакции коагуляции и осаждения несахаров свекловичного сока, но и снизить микробиологическую загрязненность соков путем адсорбции микроорганизмов на поверхности сорбентов.

ЛИТЕРАТУРА

- 1. Находкина, В.З. Микробиология и микробиологический контроль в свеклосахарном производстве [Текст] / В.З. Находкина. М.: Пищевая промышленность, 1975. 98 с.
- 2. Бугаенко, И. Ф. Потери сахара на диффузии под действием микроорганизмов [Текст] / И. Ф. Бугаенко, В.В. Буромский // Сахарная пром-ть. -1999. № 5-6. -C. 14-15.
- 3. Слюсаренко, Т.П. Лабораторный практикум по микробиологии пищевых производств [Текст] / Т.П. Слюсаренко. М.: Легкая и пищевая промышленность, 1984. 208 с.
- 4. Пат. 1017735 (РФ), С 13 D 3/12. Способ очистки диффузионного сока / Лосева В.А., Струкова Н.М.; заявл. 24. 07. 81; опубл. 15. 05. 83.