Весник ВГУЭС, № 1, 2012

УДК 536.25

Профессор В.И. Ряжских, доцент В.А. Сумин, доцент А.А. Богер
(Воронеж. гос. ун-т инж. технол.) кафедра высшей математики, тел. (473) 255-35-54

Температурное поле тепловыделяющей жидкости в квадратной области с неоднородными граничными условиями первого рода

Назане применения интегрального преобразования Фурье аналитически решена задача о стационарном распределении температурных полей тепловыделяющей жидкости в квадратной области при неоднородных граничных условиях первого рода для кондуктивного режима переноса теплоты.

Based on the of the integral Fourier transforms the problem of stationary temperature fields distribution of heat-generating fluid in a square area is analytically solved under non-uniform first kind boundary conditions for the conductive heat transfer mode.

Ключевые слова: неоднородные граничные условия первого рода, преобразование Фурье, стационарное распределение температурных полей.

В связи с проблемой хранения радиоактивных отходов пристальный интерес исследователей вызывает изучение поведения тепловыделяющих жидкостей в замкнутых объемах при различных граничных условиях на смоченной поверхности [1, 2]. Для решения этой задачи необходимо рассмотреть тепловой обстановке не только в турбулентном и ламинарном режимах, но и в кондуктивном, когда вязкость среды высока из-за присутствия твердой дисперсной фазы. Это дает основание использовать в качестве модельного представления о механизме переноса теплоты только молекулярную теплопроводность [3]. В такой постановке задачи можно идентифицировать структуру температурного поля и определить ряд характеристик, среди которых локализация и величина максимальной температуры имеет наиболее важное прикладное значение.

Рассматривается квадратная область со стороной h, м, содержащая теплопроводную среду с однородной мощностью тепловыделения q, Вт/м2, и известными теплофизическими характеристиками — плотностью ρ, кг/м3; теплопроводностью λ, Вт/(м·К); теплоемкостью c_p, Дк/град/кг·К, одна сторона которой поддерживается при температуре t_1, К, а остальные — при температуре t_0, К. Математическая формулировка задачи в этом случае будет:

$$ \rho c_p \frac{\partial t}{\partial \tau} = \lambda \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} \right) + q; \quad (1) $$

$$ t(x, h) = t_1; \quad (2) $$

$$ t(h, y) = t(h, 0) = t(h, y) = t_0; \quad (3) $$

где τ — текущее время; c — локальная температура, К.

Пусть для определенности $t_1 > t_0$, тогда система (1)–(3) в безразмерном виде такова:

$$ \frac{\partial \bar{t}}{\partial \bar{\theta}} = \frac{1}{Pr} \left(\frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2} \right) + \frac{1}{Pr}; \quad (4) $$

$$ T(X, 1) = T_1; \quad (5) $$

$$ T(0, Y) = T(X, 0) = T(1, Y) = 0; \quad (6) $$

где $X = \frac{x}{h}; \quad Y = \frac{y}{h}; \quad \theta = \frac{\tau v}{h^2}; \quad T_1 = \frac{(t_1 - t_0) \lambda}{\rho h^2};$

$Pr = \frac{v}{\alpha}$; v, α — кинематическая вязкость и теплопроводность среды, м2/с.

Будем рассматривать стационарный случай, тогда система (4)–(6) трансформируется в систему

$$ \frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2} = -1; \quad (7) $$

$$ T(X, 1) = T_1; \quad (8) $$

© Ряжских В.И., Сумин В.А., Богер А.А., 2012

54
Данная задача является задачей Дирихле для эллиптического уравнения в прямоугольнике. Ее решение имеет вид [5]

\begin{equation}
T_i(X,Y) = \sum_{n=1}^{\infty} \left\{ -2 \frac{T_0(\cos \mu_n - 1)}{\mu_n} \right\} sh(\mu_n X) \times
\end{equation}

\begin{equation}
\times sh(\mu_n Y) + \frac{2(\cos \mu_n - 1)}{\mu_n^3} \left(ch(\mu_n X) + \frac{1-ch\mu_n}{sh\mu_n} \right) \times
\end{equation}

\begin{equation}
\times sh(\mu_n Y) \right] \sin(\mu_n Y) + 0.5Y - 0.5Y^2. \tag{10}
\end{equation}

Однако решение задачи (7) – (9) можно получить в другой форме, используя конечное интегральное преобразование.

Примем конечное интегральное синус-преобразование [4] по переменной \(X\):

\begin{equation}
\frac{\partial^2 T_X}{\partial Y^2} - \lambda^2 T_X = 0, \tag{11}
\end{equation}

\begin{equation}
T_X(0) = 0; \tag{12}
\end{equation}

\begin{equation}
T_X(1) = -\frac{T_1}{\lambda} \cos \lambda - 1, \tag{13}
\end{equation}

где \(T_X\) – изображение \(T\); \(\lambda\) – корни характеристического уравнения \(\sin \lambda = 0\). Решение уравнения (11) с граничными условиями (12) - (13) имеет вид

\begin{equation}
T_X = \frac{\cos \lambda - 1}{\lambda} \left[\frac{sh(\lambda(1-Y))}{\lambda^2} + \frac{1}{\lambda^2} T_1 \right] - \frac{1}{\lambda^2}. \tag{14}
\end{equation}

Используя формулу обращения интегрального синус-преобразования [4], получим

\begin{equation}
T = 2 \sum_{n=1}^{\infty} \frac{\cos \lambda_n - 1}{\lambda_n} \left[\frac{sh(\lambda_n (1-Y))}{\lambda_n^2} + \frac{1}{\lambda_n^2} T_1 \right] \sin(\lambda_n X) \right] - \frac{1}{\lambda_n^2} \sin(\lambda_n X) \right], \tag{15}
\end{equation}

где \(\lambda_n = \pi n, n = 1, \infty\).

Для двух методов решения получим следующие графические зависимости для \(x = 0.5\). Исходя из рис.1 можно заключить, что решение, полученные при помощи конечных интегральных преобразований и методом разделения переменных, одинаково.

Рис. 1. Сравнение профиля температур в срединном сечении области решения

Решение (15) может быть обобщено для различных вариантов граничных условий

\begin{equation}
T(0,Y) = T_1; T(1,Y) = T(X,0) = T(X,0) = T(1,0) = 0; \tag{16}
\end{equation}

\begin{equation}
T(1,Y) = T_1; T(0,Y) = T(X,1) = T(X,0) = 0; \tag{17}
\end{equation}

\begin{equation}
T(X,0) = T_1; T(0,Y) = T(X,1) = T(1,0) = 0; \tag{18}
\end{equation}

\begin{equation}
T(0,Y) = T(1,Y) = T(X,1) = T(X,0) = 0; \tag{19}
\end{equation}

\begin{equation}
T(0,Y) = T(X,0) = T(1,Y) = T(X,1) = 0. \tag{20}
\end{equation}

Для граничных условий (16)–(18) решения по структуре аналогичны (15), а для граничных условий (19)–(21) решения получены с использованием принципа суперпозиции в силу линейности задачи:

\begin{equation}
T = 2 \sum_{n=1}^{\infty} \frac{\cos \lambda_n - 1}{\lambda_n} \left[\frac{sh(\lambda_n X)}{\lambda_n^2} - \frac{1}{\lambda_n^2} \right] \sin(\lambda_n X) \right] - \frac{1}{\lambda_n^2} \sin(\lambda_n X) \right], \tag{22}
\end{equation}

где \(\lambda_n = \pi n, n = 1, \infty\).
\[T = 2 \sum_{m=1}^{n} \frac{\cos \mu_m - 1}{\mu_m} \left[\frac{sh[\mu_m(1-X)]}{\mu_m} + \frac{2}{\mu_m} - T_1 \right] \frac{sh(\mu_m X)}{sh \mu_m} - \frac{2}{\mu_m^2} \sin(\mu_m Y); \quad (23) \]

\[T = 2 \sum_{m=1}^{n} \frac{\cos \mu_m - 1}{\mu_m} \left[\frac{sh[\mu_m(1-X)]}{\mu_m} + \frac{2}{\mu_m} - T_1 \right] \frac{sh(\mu_m X)}{sh \mu_m} - \frac{2}{\mu_m^2} \sin(\mu_m Y) + 2 \sum_{n=1}^{\infty} \frac{\lambda_n - 1}{\lambda_n^2} \left[\frac{sh(\lambda_n Y)}{sh \lambda_n} \right] \quad (24) \]

где \(\lambda \) и \(\mu \) — корни уравнений \(\sin \lambda = 0 \) и \(\sin \mu = 0 \).

Структура температурных полей при различных граничных условиях показана на рис. 2. Видно, что увеличение \(T_1 \) приводит к пропорционально-эквидистанному увеличению значений температуры в области решения.

Рис. 2. Температурные поля при \(T_1 = 1 \), соответствующие решениям (15), (22)–(24)

Литература