УДК 664.1.039

Профессор В.А. Голыбин, доцент В.А. Федорук,

аспирант М.П. Волошина

(Воронеж. гос. ун-т инж. технол.) кафедра технологии бродильных и сахаристых производств, тел. (473) 255-37-32

преподаватель М.А. Лавренова,

(ФГОУ СПО «Жердевский колледж сахарной промышленности»), тел. (47535) 5-45-08

Щелочно-термическое разложение редуцирующих веществ диффузионного сока

Обоснованы режимы технологических операций, позволяющие снизить щелочно-термическое разложение редуцирующих веществ диффузионного сока.

The modes of technological operations that reduce the thermal decomposition of alkaline-reducing substances diffusion juice are justified.

Ключевые слова: очистка диффузионного сока, редуцирующие вещества, щелочнотермическое разложение

Наибольшее влияние на степень термо-

химического разложения РВ оказывают тем-

пература реакционной среды, продолжитель-

ность известковой обработки и величина ак-

тивной щелочности, выраженной через расход

оксида кальция (СаО). В ранее выполненных

исследованиях расход СаО на основную дефе-

кацию (ОД) принимался равным или очень

близким к производственному – в пределах

2,0-2,5 % к массе свеклы или 105-125 % к мас-

се несахаров диффузионного сока. Добавление

2,0 % СаО в лабораторных условиях не являет-

ся характерным для ОД в производственных

условиях. С учетом возврата на прогрессивную

преддефекацию нефильтрованного сока І сату-

рации и сгущенных карбонатных суспензий

активная щелочность очищаемого сока в про-

цессе ОД составляет 1,0-1,4 % СаО [1]. Кроме

того, проведение дополнительной дефекации

фильтрованного сока перед II сатурацией тре-

бует отбора определенной части активной изве-

сти с операции ОД, что снижает фактический

расход реагента и меняет условия щелочного

разложения РВ [2]. Известно, что частицы не-

В ходе производственного сезона на сахарные заводы поступает свекла с различным составом различных химических соединений несахаров, наиболее вредными из которых являются редуцирующие вещества (РВ) смесь моносахаров, глюкозы, фруктозы и др. В свекле в начале и середине производственного содержание PB не превышает 0.08-0.12 % к ее массе. Во второй его половине содержание указанных химических соединений возрастает до 0,2 % к массе свеклы и более. В процессе диффузионного извлечения сахарозы РВ полностью переходят из внутриклеточного объема свекловичной ткани в диффузионный сок, а затем в его составе поступают на известково-углекислотную очистку.

В условиях высокой щелочности, обусловленной избытком гидроксида кальция, протекает щелочно-термическая конверсия РВ, вызывающая появление в очищаемом сахарном растворе дополнительных вредных несахаров — новых химических соединений, в основном, красящих веществ и различных органических кислот.

По современной технологии сахарного производства нормативное разложение редуцирующих веществ, находящихся в очищаемом диффузионном соке, должно быть проведено в процессе основной дефекации с регулируемым температурным режимом в условиях избытка известковой щелочности с последующим удалением появившихся продуктов распада за счет адсорбции карбонатом кальция при обработке сока диоксидом углерода (сатурация).

растворившегося гидроксида кальция, имеющиеся в реакционной среде, участвуют в адсорбционном процессе поглощения первичных реакционноспособных продуктов распада РВ.

В последние годы на отечественных сахарных заводах перерабатывают значительные объемы свеклы, выращенной из семян зарубежной селекции. Химический состав такой свеклы имеет большую зависимость от клима-тических условий вегетации, при краткосрочном хранении

© Голыбин В.А., Федорук В.А., Волошина М.П., Лавренова М.А., 2013

в свекле происходят значительные изменения, вызывающие накопление в ней вредных растворимых несахаров. Содержание редуцирующих веществ в хранившейся свекле возрастает в 3-4 раза и достигает 0,35-0,55 % к ее массе [3].

С учетом вышесказанного нами для исследований степени разложения РВ были приняты следующие факторы: температура реакционной среды и продолжительность известковой обработки, расход гидроксида кальция. Для получения данных, исключающих влияние других несахаров, исследования проводились на модельных водных растворах, содержащих 12 % сахарозы. Гидроксид кальция получали из свежеобожженного оксида кальция (х.ч) путем его гашения водой. После охлаждения известкового молока весовым методом определяли его плотность, рассчитывали массовую долю оксида кальция и требуемый объем известковой суспензии для ввода в реакционную среду.

После проведения в контролируемых условиях разложения PB отбирали из сосуда пробы рабочего раствора, охлаждали до 20 °C, фильтровали, доводили уксусной кислотой до нейтральной реакции и выполняли анализы по стандартным методикам с определением мас-

совых долей сухих веществ, остатка PB, оптической плотности (D) с помощью фотоколориметра при рекомендуемой длине волны.

К. Вуков в своих исследованиях для нейтрализации остаточной щелочности рабочего раствора обрабатывал его диоксидом углерода до р H_{20} 7,0-7,5 [4]. По нашему мнению такой способ неприемлем для определения оптической плотности растворов после ОД, т.к. фактически проводилась карбонизация остаточного количества оксида кальция с образованием карбоната кальция, являющегося эффективным адсорбентом образовавшихся красящих веществ, что не позволяет получать объективных экспериментальных данных.

Распад РВ и образование красящих веществ исследовали при вводе в реакционные среды с определенной температурой расчетные объемы известкового молока, эквивалентные расходу 0,5 и 1,0 % CaO к массе раствора.

Известковую обработку модельных растворов, содержащих РВ, проводили по классической схеме в два этапа: вначале предварительная дефекация при малом расходе щелочи и рН среды 11,0 (0,2 % CaO), затем основная дефекация с добавлением 0,5 и 1,0 % CaO (таблицы 1, 2).

Таблица 1 Распад РВ (0,3 %) при расходе CaO 0,5 % к массе раствора

Время, мин	Показатели распада РВ при температуре, °C								
	70		80		90				
	остаток РВ, %	D, ед./ 100 CB	остаток РВ, %	D, ед./ 100	остаток РВ,%	D, ед./			
				CB		100 CB			
1	2	3	4	5	6	7			
Предварительная дефекация									
4	96,0	0,08	91,5	0,25	79,0	2,08			
Основная дефекация									
1	82,3	0,37	66,0	1,39	49,4	4,45			
2	69,5	0,52	50,0	2,28	38,0	6,54			
3	58,9	0,84	41,0	2,81	28,3	7,45			
4	53,2	1,18	33,6	3,29	23,0	8,36			
5	48,4	1,50	25,5	3,81	18,7	8,63			
6	43,0	1,75	24,0	4,27	15,5	8,86			
8	34,5	2,30	16,8	5,02	12,4	9,00			
10	28,5	2,79	12,7	5,42	11,0	9,10			
14	21,0	3,42	10,9	5,83	9,3	9,18			
16	18,5	3,47	9,3	6,06	7,8	9,25			
20	14,7	3,67	8,2	6,38	5,6	9,30			

Из данных таблицы 1 видно значительное увеличение оптической плотности рабочих растворов с повышением температуры: при $70\,^{\circ}\text{C}$ - D 3,67 ед. (остаток PB 14,7 %); при $90\,^{\circ}\text{C}$ и той же степени распада редуцирующих веществ оптическая плотность увеличилась до

8,95 ед. или в 2,44 раза. Наблюдается существенный рост удельной оптической плотности рабочих растворов в условиях оптимальной известковой преддефекации: при 70 °C распад РВ 4 % (0,02 ед. оптической плотности на 1 % разложившихся РВ); при 90 °C распад РВ 21 %

(0,1 ед. оптической плотности на 1 % PB), т.е. в 5 раз больше. Вклад предварительной и основной дефекаций в образование красящих веществ на 1 часть разложившихся PB: при 70 °C 2,73 ед.; при 90 °C 6,25 ед. или в 2,29 раза

больше. Полученные результаты подтверждают целесообразность осуществления преддефекации диффузионного сока при переработке свеклы пониженного качества в режиме теплой обработки (в интервале 55-60 °C) [5].

Таблица 2 Распад РВ (0,3 %) при расходе СаО 1,0 % к массе раствора

	Показатели распада РВ при температуре, °C								
Время, мин	70		80		90				
	остаток РВ, %	D, ед./ 100 CB	остаток РВ, %	D, ед./ 100 CB	остаток РВ,%	D, ед./ 100 CB			
1	2	3	4	5	6	7			
	Предварительная дефекация								
4	95,7	0,09	91,2	0,26	79,3	2,11			
	Основная дефекация								
1	68,5	0,56	51,2	1,43	33,2	3,03			
2	50,7	1,08	33,6	2,79	18,3	5,58			
3	41,8	1,51	24,0	3,86	11,8	7,65			
4	35,0	1,87	18,6	4,55	9,2	8,84			
6	25,1	2,39	11,2	5,34	5,4	9,95			
8	18,2 2,75		9,1	5,66	5,0	10,35			
10	13,7	3,03	7,3	5,87	4,6	10,50			
16	6,5	3,46	4,4	6,38	4,2	10,64			
20	4,6	3,55	3,6	6,50	3,8	10,72			

Увеличение расхода СаО на основную дефекацию в два раза (таблица 2) позволило увеличить степень распада РВ, особенно при 70 °С (остаток несахаров в 3,2 раза меньше) при снижении оптической плотности рабочих растворов. Высокая температура основной дефекации (90 °С), несмотря на двукратное увеличение расхода гидроксида кальция, приводит к интенсивному росту оптической плотности рабочих растворов: при достижении сте-

пени распада редуцирующих веществ 94,6 % последующий прирост этого показателя всего на 1 % вызывал увеличение оптической плотности на 0.77 ел.

Рассчитали количественные показатели массы образующихся продуктов распада редуцирующих несахаров (красящих веществ) с использованием величины оптической плотности рабочих растворов (таблица 3).

Т а б л и ц а 3 Изменение удельной оптической плотности при разных условиях разложения редуцирующих веществ

Показатели		Прод	олжительнос	ть известк	ковой обработки (ОД), мин				
распада	5	10	15	20	5	10	15	20	
PB		0,3 % PB,	0,5 % CaO			0,3 % PB, 1,0 % CaO			
	Температура 70 °C								
Распад РВ, %	47,6	67,5	76,3	81,3	70,1	82,0	88,0	91,1	
Распад РВ, г	0,75	1,06	1,20	1,28	1,12	1,29	1,39	1,43	
D, ед./100 CB	1,42	2,71	3,37	3,59	2,04	2,94	3,30	3,46	
Удельная D, ед./г PB	1,89	2,56	2,81	2,80	1,82	2,28	2,37	2,42	
	Температура 90 °C								
Распад РВ, %	60,3	68,0	71,0	73,4	72,0	74,7	75,1	75,5	
Распад РВ, г	0,95	1,07	1,12	1,16	1,13	1,17	1,18	1,19	
D, ед./100 CB	6,55	7,02	7,14	7,22	7,29	8,39	8,51	8,61	
Удельная D, ед./ г PB	6,89	6,56	6,38	6,22	6,45	7,17	7,21	7,24	

На начальной стадии основной дефекации за первые 5 мин разложения РВ удельная оптическая плотность при 90 °C в 3,6 раза выше, чем при 70 °С (расход СаО 0,5 %). При увеличении ввода гидроксида кальция в 2 раза при 70 °C наблюдается снижение удельной оптической плотности рабочих растворов, что можно объяснить наличием в реакционной среде частиц нерастворившегося гидроксида кальция с достаточно высокой поверхностной активностью [6]. При 90 °C увеличение ввода гидроксида кальция несколько повышает удельную оптическую плотность за счет высокой скорости появления в реакционной среде продуктов щелочного распада редуцирующих веществ, которые адсорбируются частицами карбоната кальция в процессе последующей карбонизации оксида кальция недостаточно полно. В отличие от работы [6], в которой исследования проводились в водных растворах (рН 11,8), в наших опытах в рабочих растворах присутствовала сахароза (12 %), что уменьшало вероятность присутствия нерастворившихся частиц гидроксида кальция и увеличивало активную щелочность среды (рН 12,4). По данным А.Р. Сапронова с повышением рН реакционной среды быстрее достигается максимум оптической плотности продуктов распада редуцирующих веществ, после чего с течением времени наблюдается ее снижение [1]. В условиях наших опытов (90 °С, рН 12,4) происходит быстрое разложение редуцирующих веществ, и параллельно протекают реакции полимеризации образовавшихся первичных реакционноспособных продуктов с укрупнением молекул красящих веществ и некоторым изменением их свойств, однако состояние их коагуляции еще не достигается.

Из полученных экспериментальных данных можно сделать вывод о предпочтительном термохимическом разложении редуцирующих веществ, содержащихся в значительном количестве в исходном диффузионном соке, при невысокой температуре основной дефекации (не выше 70 °C) — за 20 мин процесса достигается высокая степень их распада (более 95 %) с низкой оптической плотностью образующихся вторичных продуктов — красящих веществ [7].

Выполнены исследования щелочного распада РВ в более мягких условиях основной дефекации, характеризующих теплый режим известковой обработки при 50 и 60 °C (таблицы 4, 5).

Т а б л и ц а 4 Показатели разложения PB при пониженной температуре известковой обработки

Время, мин	Разложение РВ (0,5 %), ввод 1,0 % CaO при температуре, °C							
		50	60					
	остаток РВ, % Д. /100 СТ		остаток РВ, %	D,ед. /100 CB				
5	76,5	0,45	52,6	1,26				
10	62,0	0,81	33,0	2,08				
15	50,1	1,14	24,1	2,76				
20	39,2	1,43	18,1	3,30				
25	32,4	1,74	14,8	3,68				
30	27,6	1,98	13,6	3,86				
Нагревание рабочего раствора до 85 °C в течение 9 мин								
9	4,9	4,70	5,0 5,47					

Таблица 5 Изменение удельной оптической плотности растворов при различных условиях разложения (0,5 % PB, 1,0 % CaO)

П	Продолж	кительност	Нагревание до 85°C						
Показатели	10	20	30	10	20	30	OT		
	50				60	50 °C	60 °C		
Распад РВ, г	1,00	1,60	1,90	1,76	2,15	2,27	2,23	2,43	
D, ед./ 100 CB	0,81	1,43	1,98	2,08	3,30	3,86	4,70	5,47	
Удельная D, ед. /г PB	0,81	0,89	1,04	1,18	1,53	1,70	2,11	2,25	

Из приведенных в таблицах 4, 5 данных видно заметное снижение оптической плотности рабочих растворов после разложения РВ в условиях теплой длительной дефекации и медленным их нагреванием до оптимальной температуры карбонизации (85 °C).

Величины удельной оптической плотности рабочих растворов после их нагревания до 85 °C при одинаковых степенях распада РВ (около 95 %) составили 2,11 и 2,25 ед./г разложившихся несахаров, что в 3,0-3,5 раза ниже, чем при 90 °C (таблица 3).

Таким образом, с точки зрения минимального образования красящих веществ - продуктов щелочно-термического разложения редуцирующих веществ, и создания благоприятных условий их адсорбционного удаления частицами карбоната кальция на последующей ступени очистки – карбонизации, целесообразно вначале проводить комбинированную основную дефекацию диффузионного сока с длительной (до 30 мин) первой теплой ступенью и последующим медленным (в течение 7-9 мин) нагреванием очищаемого сока до 82-85 °C.

ЛИТЕРАТУРА

- 1 Сапронов, А.Р. Технология сахара [Текст] / А.Р. Сапронов, Л.А. Сапронова, С.В. Ермолаев. СПб.: ИД «Профессия», 2013. 296 с.
- 2 Голыбин, В.А. Эффективность завершающей стадии очистки диффузионного сока [Текст] / В.А. Голыбин, В.А. Федорук, Ю.И. Зелепукин, А. А. Ткачев // Сахар. 2012. № 9. С. 30-33.
- 3 Чернявская, Л.И. На пороге ВТО: качество сырья и продукции сахарного производства стран СНГ [Текст] / Л.И. Чернявская // Сахар. -2006. -№ 6. С. 9-14.
- 4 МакДжинис, Р.А. Свеклосахарная технология [Текст] / Р.А. МакДжинис. 2002. 224 с.

- 5 Голыбин, В.А. Анализ факторов эффективности прогрессивной преддефекации [Текст] / В.А. Голыбин, В.А. Федорук, Н.А. Воронкова // Сахар. 2013. N = 6. C. 74-80.
- 6 Бугаенко, И.Ф. Адсорбция красящих веществ частицами гидроокисей [Текст] / И.Ф. Бугаенко, С. Г. Махмуд // Известия вузов. Пищевая технология. -1980. -№ 6. -C. 58-60.
- 7 Голыбин, В.А. Повышение эффективности использования гидроксида кальция для очистки диффузионного сока [Текст] / В.А. Голыбин, В.А. Федорук, А.А. Ткачев // Вестник ВГУИТ. 2012. № 2. С. 144 148.

REFERENCES

- 1 Sapronov, A.R. Technology of sugar [Text] / A.R. Sapronov, L.A. Sapronova, S.V. Yermolaev. StP: PH «Professiya», 2013. 296 p.
- 2 Golybin, V.A. The effectiveness of the final stages of juice purification [Text] / V.A. Golybin, V.A. Fedoruk, Y.I. Zelepukin, A.A. Tkachev // Sugar. -2012. -N 9. -P. 30-33.
- 3 Chernjavskaja, L.I. On the eve of the WTO: the quality of raw materials and products of sugar production of the CIS [Text] / L.I. Chernyavskaya// Sugar. -2006. $-N_{\odot}$ 6. -P. 9-14.
- 4 McGinis, R.A. Beet-Sugar Technology [Text] / R.A. McGinis. 2002. 224 p.
- 5 Golybin, V. A. Analysis of the factors of efficiency progressive preliming [Text] / V.A. Golybin, V.A. Fedoruk, N.A. Voronkov // Sugar. $2013. N_{\odot} 6. P. 74-80.$
- 6 Bugaenko, I.F. Adsorption of dyes hydroxide particles [Text] / I.F. Bugaenko, S.G. Mahmood // Proceedings of the universities. Food technology. -1980. -N o 6. -P. 58 60.
- 7 Golybin, V.A. More efficient use of calcium hydroxide to extract purification [Text] / V.A. Golybin, V.A. Fedoruk, A.A. Tkachev // Bulletin of VSUET. 2012. № 2. P. 144 148.