УДК 631.563.2: 664.6/.7

Профессор А.А. Шевцов,

(Воронеж. гос. ун-т инж. технол.) кафедра технологии хранения и переработки зерна, тел. (473) 255-65-11

доцент И.О. Павлов, ст. преподаватель Е.В. Воронова

(Воронеж. гос. ун-т инж. технол.) кафедра информационных технологий моделирования и управления, тел. (473) 255-25-50

Оценка точности методов математического моделирования процесса тепломассопереноса в дисперсных средах

Дан метод и получено решение задачи конвективной сушки зерна в численно-аналитической форме для системы уравнений А.В. Лыкова нестационарной сушки путём представления искомых потенциалов модифицированными рядами Фурье. Проведено сравнение решений различными методами.

A method and obtained the solution of the convective drying of grain in numerical - analytical form for the system A. Lykov unsteady drying by submitting the required potentials modified Fourier series, and a comparison of different methods of making.

Ключевые слова: сушка, тепломассообмен, модифицированные ряды Фурье, математическая модель, метод прямых, температура, влагосодержание, дисперсная среда.

Точные решения задач тепло массопереноса в замкнутом виде, удаётся получить далеко не всегда. В остальных случаях точные решения либо принципиально невозможны (когда граничные условия или условия на контуре нельзя выразить в аналитической форме), либо приходится сталкиваться с таким рядом вычислений, что получение аналитических решений становится нецелесообразным. В связи с этим при решении многих практических задач давно используются приближённые методы исследования.

Эти методы можно разбить на две основные группы. К первой относятся вариационные методы, применение которых позволяет получить численные алгоритмы и приближённые аналитические выражения искомых функций. Вторую — составляют численные методы, при использовании которых определяются значения искомых функций при тех или иных значениях аргументов.

Развитие теории тепломассопереноса, обязано, главным образом, работам академика А.В. Лыкова и его школы, что создало все возможности для широкого внедрения в инженерную практику аналитических и экспериментально-аналитических методов расчета процессов тепломассопереноса в системах с твердой фазой.

Для решения задач тепломассопереноса применяют различные методы: сеток, прямых, разделения переменных, интегральных преобразований Лапласа.

Описание динамики процесса проводится по уравнениям А. В. Лыкова [1] при допущении о бесконечно малой величине градиента общего градиента давления.

В общем виде эта задача относится к тем, где используются уравнения с переменными параметрами. В качестве таких параметров могут приниматься коэффициент теплообмена α и влагообмена β , а также коэффициент диффузии влаги $a_m(t)$, которые представлены эмпирическими коэффициентами. Математическое описание процесса сушки зерна еще усложняется, так как зерно неоднородно по структуре и составу.

Рассмотрим алгоритм решения данной задачи в аналитической форме с помощью модифицированных рядов Фурье [2, 3], а затем сравним полученное решение с решением А.В. Лыкова [1] и решением по методу прямых [4].

За основу возьмём систему уравнений А.В. Лыкова [1], представленную уравнениями в сферической системе координат в безразмерной форме:

$$\begin{split} &\frac{\partial T}{\partial \tau} = A_{11} \Biggl(\frac{\partial^{2}T}{\partial r^{2}} + \frac{2}{r} \frac{\partial T}{\partial r} \Biggr) - A_{12} \Biggl(\frac{\partial^{2}U}{\partial r^{2}} + \frac{2}{r} \frac{\partial U}{\partial r} \Biggr), \\ &\frac{\partial U}{\partial \tau} = -A_{21} \Biggl(\frac{\partial^{2}T}{\partial r^{2}} + \frac{2}{r} \frac{\partial T}{\partial r} \Biggr) + A_{22} \Biggl(\frac{\partial^{2}U}{\partial r^{2}} + \frac{2}{r} \frac{\partial U}{\partial r} \Biggr), \\ &\left(U, T \right) \geq 0 \,, \quad (U, T) < \infty \quad \text{при} \quad r \to 0 \\ &r \in [0, 1] \,, \quad \tau \in [0, \tau_{k}] \,, \end{split}$$

с граничными условиями третьего рода на шаровой поверхности:

$$\frac{\partial T(r,\tau)}{\partial r}\Big|_{r=1} - a_1 (1 - T(r,\tau)\Big|_{r=1}) +
+ a_2 (1 - U(r,\tau)\Big|_{r=1}) = 0,
- \frac{\partial U(r,\tau)}{\partial r}\Big|_{r=1} + b_1 (1 - T(r,\tau)\Big|_{r=1}) +
+ b_2 (1 - U(r,\tau)\Big|_{r=1}) = 0,$$
(2)

с начальными условиями

$$T(r,0) = 0$$
, $U(r,0) = 0$. (3)

где комплексы критериев определяются уравнениями: $A_{11} = 1 + \varepsilon$ КоLu Pn , $A_{12} = \varepsilon$ КоLu , $A_{21} = \text{LuPn}$, $A_{22} = \text{Lu}$, $a_1 = \text{Bi}_q$, $a_2 = (1 - \varepsilon)$ КоLuBi $_m$, $b_1 = \text{Pn Bi}_q$, $b_2 = \text{Bi}_m (1 - (1 - \varepsilon) \text{PnKoLu})$, а используемые критерии $\tau = \text{Fo}$, $\tau_k = \text{Fo}_k$ – безразмерное текущее и конечное время; Ко – Коссовича; Lu – Лыкова; Pn – Поснова; Fo – число Фурье; теплообменный и массообменный критерии Био Bi_q , Bi_m .

Для решения задачи (1)-(3) будем использовать три метода:

 M_1 — метод интегральных преобразований Лапласа и разложение в ряды Фурье, предложенный А.В.Лыковым и Ю.А. Михайловым;

 M_2 – метод прямых [4];

 M_3 — метод разложения неизвестных функций по модифицированным рядам Фурье [2, 3]. Алгоритм решения по методу M_1 приведён в [2].

Решение М2.

Шаг 1. С учетом того что прямая $X_k = k h$, k = 1, 2, ..., N+1, где N — число внутренних прямых; h — шаг по X; h = 1/N, получим систему дифференциальных уравнений:

лля
$$k=1$$

$$\frac{dT_{1}(\tau)}{d\tau} = \frac{A_{11}}{h^{2}} \left(2T_{2}(\tau) - 2T_{1}(\tau) \right) - \frac{A_{12}}{h^{2}} \left(2U_{2}(\tau) - 2U_{1}(\tau) \right),$$

$$\frac{dU_{1}(\tau)}{d\tau} = -\frac{A_{21}}{h^{2}} \left(2T_{2}(\tau) - 2T_{1}(\tau) \right) + \frac{A_{22}}{h^{2}} \left(2U_{2}(\tau) - 2U_{1}(\tau) \right);$$

для
$$k=2, 3, ..., N$$
:
$$\frac{dT_k\left(\tau\right)}{d\tau} = \frac{A_{11}}{h^2} \left(\frac{k+1}{k}T_{k+1}\left(\tau\right) - 2T_k\left(\tau\right) + \frac{k-1}{k}T_{k-1}\left(\tau\right)\right) - \frac{A_{1,2}}{h^2} \left(\frac{k+1}{k}T_{N+k+2}\left(\tau\right) - 2T_{N+k+1}\left(\tau\right) + \frac{k-1}{k}T_{M+k}\left(\tau\right)\right),$$

$$\frac{dU_k\left(\tau\right)}{d\tau} = \frac{A_{21}}{h^2} \left(\frac{k+1}{k}U_{k+1}\left(\tau\right) - 2U_k\left(\tau\right) + \frac{k-1}{k}U_{k-1}\left(\tau\right)\right) + \frac{A_{2,2}}{h^2} \left(\frac{k+1}{k}U_{N+k+2}\left(\tau\right) - 2U_{N+k+1}\left(\tau\right) + \frac{k-1}{k}U_{M+k}\left(\tau\right)\right)$$
 для $k=N+1$:
$$\frac{dT_{N+1}\left(\tau\right)}{d\tau} = A_{11}\left(\Delta T\right)_{N+1} - A_{12}\left(\Delta U\right)_{N+1};$$

$$\frac{dU_{N+1}\left(\tau\right)}{d\tau} = -A_{21}\left(\Delta T\right)_{N+1} + A_{22}\left(\Delta U\right)_{N+1},$$
 где
$$(\Delta T)_{N+1} = 2\frac{\partial T}{\partial r}(1,\tau) + \frac{2}{h}\left(\frac{\partial T}{\partial r}(1,\tau) - \frac{T_{N+1}\left(\tau\right) - T_{N}\left(\tau\right)}{h}\right),$$

$$(\Delta U)_{N+1} = 2\frac{\partial U}{\partial r}(1,\tau) + \frac{2}{h}\left(\frac{\partial U}{\partial r}(1,\tau) - \frac{U_{N+1}\left(\tau\right) - U_{N}\left(\tau\right)}{h}\right).$$

Начальные условия остаются прежними: $T_k\big|_{\tau=0}=0$, $U_k\big|_{\tau=0}=0$, k=1,2,..,N+1 .

Шаг 2. Производные от функций T и U на границах слоя подставляются в систему дифференциальных уравнений из граничных условий (2). Граничные условия, таким образом, находятся в системе в виде дифференциальных выражений.

Решение М3.

Шаг 1. Решается система обыкновенных дифференциальных уравнений:

$$\begin{split} &-z_1' + A_{11}z_3 - A_{1,2}z_4 = 0, \\ &-z_2' - A_{21}z_3 + A_{2,2}z_4 = 0, \\ &a_1z_1 - a_2z_2 + \frac{1}{3}z_3 - a_1 + a_2 + \sum_{m=1}^M z_{m+4} m\pi (-1)^m = 0, \\ &-b_1z_1 - b_2z_2 - \frac{1}{3}z_4 + b_1 + b_2 - \sum_{m=1}^M z_{m+4+M} m\pi (-1)^m = 0, \\ &-A_{11} \left[\frac{1}{2}\pi^2 m^2 z_{m+4} + \frac{(-1)^m}{m\pi} z_3 \right] + \\ &+ A_{12} \left[\frac{1}{2}\pi^2 m^2 z_{m+4+M} + \frac{(-1)^m}{m\pi} z_4 \right] = 0, \\ &m = 1..M \ , \\ &\frac{(-1)^m}{m\pi} z_1' + \frac{(-1)^{m+1}}{m^3\pi^3} z_3' - \frac{1}{2}z_{m+4}' - \\ &\frac{(-1)^m}{m\pi} z_2' + \frac{(-1)^{m+1}}{m^3\pi^3} z_4' - \frac{1}{2}z_{m+4+M}' + \end{split}$$

$$+A_{21} \left[\frac{1}{2} \pi^2 m^2 z_{m+4} + \frac{(-1)^m}{m\pi} z_3 \right] -$$

$$-A_{22} \left[\frac{1}{2} \pi^2 m^2 z_{m+4+M} + \frac{(-1)^m}{m\pi} z_4 \right] = 0.$$
 $m = 1..M$

с начальными условиями $z_i(0) = 0$, i = 1,...,N, где M — число членов ряда, N = 2M + 4 — общее количество уравнений.

Шаг 2. Записываем решение в общем виде:

$$\begin{split} T(r,\tau) &= \varphi(\tau) + \varphi_1(\tau) \bigg(\frac{1}{6}r^2 - \frac{1}{6}\bigg) + \\ &+ \frac{1}{r} \sum_{m=1}^M T_m(\tau) \sin \left(m\pi r\right), \\ U(r,\tau) &= \psi(\tau) + \psi_1(\tau) \bigg(\frac{1}{6}r^2 - \frac{1}{6}\bigg) + \\ &+ \frac{1}{r} \sum_{m=1}^M U_m(\tau) \sin \left(m\pi r\right), \\ \mathrm{fle} \, T_m(\tau) &= T_{m+4}(\tau), \, U_m(\tau) = U_{m+4+M}(\tau), \, m = 1...M \;, \\ \varphi(\tau) &= z_1(\tau), \, \psi(\tau) = z_2(\tau), \, \varphi_1(\tau) = z_3(\tau), \\ \psi_1(\tau) &= z_4(\tau) \,. \end{split}$$

Решение системы алгебраических и обыкновенных дифференциальных уравнений можно получить аналитически методом интегральных преобразований Лапласа или методом Эйлера, или численными методами Рунге-Кутты [5].

Средние значения потенциалов переноса теплоты и вещества в шаре в методах M_1 и M_3 вычисляются по соотношениям:

$$\overline{T}(\tau) = \frac{3}{R^3} \int_{0}^{R} r^2 T(r, \tau) dr, \quad \overline{U}(\tau) = \frac{3}{R^3} \int_{0}^{R} r^2 U(r, \tau) dr. \quad (4)$$

Для сравнения решений в качестве базовых взяты значения критериев $\epsilon=0,5$, Ko=1,2, Pn=0,5, Bi $_{\rm m}=10$. Критерии Лыкова и теплообменный критерий Био выбирались из множеств Lu={0,1;0,3;0,5;0,7;1.0} и Bi $_{\rm q}=\{1;5;10;15;20\}$.

Проводились вычисления по программам, реализующим алгоритмы $M_1,\ M_2$ и M_3 в системе Maple 9.5.

Для проведения сравнения в алгоритме А.В. Лыкова использованы корни, полученные решением характеристического уравнения в системе Maple 9.5. Результаты, полученные по программам, отличаются не более чем на 1 %. На рис.1-3 приведен графический анализ результатов работы алгоритмов.

В табл. 1 приведены значения температуры и влагосодержания, а в табл. 2 — оценка работы методов.

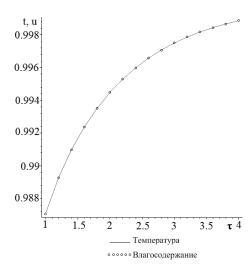


Рис. 1. Значения температуры и влагосодержания в центре зерна

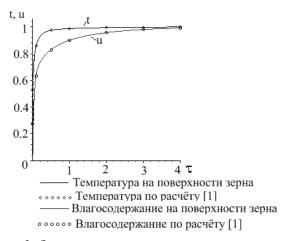


Рис. 2. Значения температуры и влагосодержания на поверхности зерна

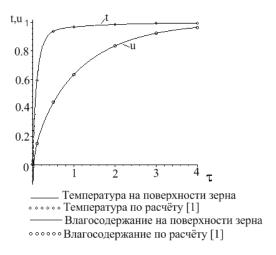


Рис. 3. Средние значения температуры и влагосодержания на поверхности зерна

Численные значения температуры и влагосодержания по методам M_1 , M_2 и M_3

τ	Температура зерна (Т)			Влагосодержение зерна (U)					
	в цен-	средняя	на поверх-	в центре	среднее	на поверхности			
	тре	1	ности	1					
Метод А.В. Лыкова и Ю.А. Михайлова M ₁									
1.00	0.93814	0.96963	0.98710	0.15716	0.63533	0.89987			
2.00	0.97020	0.98654	0.99448	0.58547	0.83594	0.95696			
3.00	0.98632	0.99387	0.99749	0.80936	0.92514	0.98044			
4.00	0.99375	0.99720	0.99885	0.91286	0.96581	0.99107			
Метод прямых М2									
1.00	0.93802	0.96944	0.98710	0.16192	0.63483	0.90016			
2.00	0.97032	0.98651	0.99449	0.58728	0.83540	0.95701			
3.00	0.98635	0.99385	0.99749	0.80987	0.92478	0.98044			
4.00	0.99375	0.99718	0.99885	0.91293	0.96558	0.99105			
Метод модифицированных рядов Фурье M ₃									
1.00	0.93768	0.96946	0.98707	0.15689	0.63543	0.89992			
2.00	0.97021	0.98655	0.99448	0.58552	0.83598	0.95697			
3.00	0.98632	0.99387	0.99749	0.80941	0.92517	0.98045			
4.00	0.99375	0.99720	0.99886	0.91288	0.96582	0.99107			

 $T\ a\ б\ л\ u\ ц\ a\ 2$ Оценка работы методов в виде абсолютных отклонений и средней ошибки аппроксимации*

№	Макс. абс.	Средняя ошибка	Сравнение методов		
	отклон.	аппрок- сим., %	Базовый М1	Расчет- ный	
1	0.00023	0.00917	По Т в центре	M_2	
2	0.00046	0.00391	По Т в центре	M ₃	
3	0.00019	0.00376	По средней Т	M_2	
4	0.00017	0.00160	По средней Т	M ₃	
5	0.00003	0.00076	По Т на по- верхн.	M_2	
6	0.00003	0.00050	По Т на по- верхн.	M ₃	
7	0.00476	0.49590	По U в центре	M_2	
8	0.00027	0.01880	По U в центре	M_3	
9	0.00061	0.05285	По среднему U	M ₂	
10	0.00010	0.00497	По среднему U	M ₃	
11	0.00029	0.00707	По U на по- верхн.	M_2	
12	0.00005	0.00193	По U на по- верхн.	M ₃	

*В качестве экспериментальных значений приняты значения температуры и влагосодержания, вычисленные по алгоритму M_3 . Сравнение результатов проводилось при $\tau > 0$.

Проведенное исследование подтвердило пригодность применения метода модифицированных рядов Фурье для решения задач тепломассопереноса путем сравнения с известным решением А.В. Лыкова и методом прямых.

Предлагаемый метод отличается от метода А. В. Лыкова тем, что отсутствует необходимость вычисления корней характеристического уравнения. Метод прямых требует вычисления средних значений потенциалов

переноса теплоты, используя квадратурные формулы, а в методах M_1 и M_3 средние значения вычисляются по соотношениям (4), что гораздо проще. Доказано, что подобные ряды Фурье обладают свойством повышенной сходимости и допускают возможность почленного дифференцирования [3].

Применение модифицированных рядов Фурье для решения подобных задач позволяет получить приближенное решение в аналитическом виде с любой точностью при минимальных вычислительных затратах на ЭВМ.

ЛИТЕРАТУРА

- 1. Лыков, А.В. Теория тепло- и массопереноса [Текст] / А.В. Лыков, Ю.А. Михайлов. М.-Л.: Госэнергоиздат, 1963. С. 468.
- 2. Воронова, Е. В. Анализ результатов решения уравнений связанного массопереноса [Текст] / Е. В. Воронова, И. О. Павлов // Современные материалы, техника и технология: материалы Международной научнопрактической конференции. Курск: ЮЗГУ, 2011. С. 64-67.
- 3. Чернышов, А. Д. Улучшенные ряды Фурье и граничные функции [Текст] / А. Д. Чернышов // Актуальные проблемы прикладной математики, информатики и механики: сб. трудов Международной конференции. Воронеж, 2009. С. 236 238.
- 4. Самарский, А. А. Введение в численные методы [Текст] / А. А. Самарский. М.: Наука, 1982. С. 269.
- 5. Котляр, Я. М. Методы и задачи тепломассообмена [Текст] / Я.М. Котляр. М.: Машиностроение, 1987. С. 356.