УДК 519.8: 678.043.8

Профессор С.В. Бухарин, студент М. Индала,

(Воронеж, гос. ун-т инж. технол.) кафедра информационных и управляющих систем, тел. (4732) 255-38-75

доцент А.В. Мельников

(Воронеж, гос. ун-т инж. технол.) кафедра информационных технологий, моделирования и управления, тел. (4732) 255-25-50

Определение комплексного показателя «качество-цена» готовой продукции на примере производства резин

Предложен комплексный показатель «качество-цена» изготовленных резин. Сравниваются между собой различные образцы продукции.

The complex quality-price indicator of the made rubbers is offered. Various product samples are compared among themselves.

Ключевые слова: показатель качества, метод анализа иерархий, резины.

Продукция современного химического производства характеризуется множеством показателей, часть из которых носит количественный характер, часть — качественный, а другая часть характеризует наличие или отсутствие определенного свойства. Обычно показателей много, некоторые из них взаимосвязаны, а некоторые изменяются разнонаправленно. Кроме того, обычно возникает вопрос о значимости отдельных показателей и установлении между ними определенного приоритета. Для предприятий важна разработка интегральной оценки качества производимой продукции и введение обобщенных показателей качества. Научно обоснованное решение этой задачи может быть получено на основе теории экспертных систем.

В статье предложено введение комплексного показателя «качество-цена» готовой продукции и модификация его применительно к процессу производства резин. В основе установления приоритета частных показателей (признаков) лежит метод анализа иерархий.

Общая характеристика резиновых смесей. Постоянный интерес к вулканизации и вулканизующим агентам обусловлен необходимостью быстрой и адекватной корректировки рецептуры резин в связи с изменениями сырьевой базы промышленности. Поэтому актуальным является изучение влияния качества и

© Бухарин С.В., Индала М., Мельников А.В., 2012 способов ввода цинковых белил (активатора вулканизации) на изготовление резин.

В табл. 1 приведены результаты применения дешевых некондиционных белил с содержанием оксида цинка от 86,0 до 97,5 % (образцы НЦ-2, НЦ-3, НЦ-4) в сравнении с высокочистыми цинковыми белилами с содержанием полезного вещества 99,7 % (образец КЦ-1И) [1].

Как видим, введение в резины оксида цинка в виде предварительно приготовленных композиций (сплавов) приводит к улучшению качества получаемых резин практически до уровня резин с высокочистыми белилами.

Выбор признаков объекта экспертизы. Первым этапом экспертизы резиновых смесей и вулканизатов является анализ обычно применяемых показателей качества продукции (см. табл.1) и разделение их на подмножества количественных, качественных признаков, признаков наличия, психофизиологической природы и т.д.

	1			T		
		СКИ-3			СКД	
Показатель	КЦ-1И	НЦ-2	НЦ-4	КЦ-1И	НЦ-2	НЦ-4
	порошок			порошок		
Вязкость по Муни,						
условных единиц						111,3/
при 100 °C	52,5	58,8/52,5*	60,9/54,6	96,6	92,4/ 94,5	107,1
Вулканизационные						
характеристики (рео-						
метр Монсанто,						
150 °С) с, мин	17,0	19,0/18,5	18,8/18,5	18,7	21,3/20,0	20,0/19,5
Содержание свобод-			0.039 /		0,059 /	0,054 /
ной серы, % (мас.)	0,027	0,041/0,045	0,041	0,061	0,065	0,060
Условное напряжение						
при удлинении						
300 %, МПа	10,7	10,3/11.0	9,5/11,0	7,8	7,9/8,9	7,8/8,0
Условная прочность						
при растяжении, МПа	21,1	18,2/19.3	14,7/16,0	9,1	9,0/10,1	8.7/9,1
Относительное удли-						
нение при разрыве, %	470	440/453	395/380	383	343/348	318/324
Сопротивление раз-						
диру, кН/м	29,9	18,1/28,6	21,0/27,0	44,3	25,8/37,4	31,5/37,6
Твердость по Шору А,						
ед	56	55 /54	56 / 54	63	63/61	64/64
Эластичность по от-						

Свойства резиновых смесей и вулканизатов, содержащих цинковые белила различного качества

52 / 54

В нашем случае все признаки являются количественными и делятся на две группы: положительного и отрицательного эффекта.

скоку, %

Приведем далее традиционно используемые показатели и выберем для них соответствующие обозначения признаков (табл.2).

51/52

Таблица2 Выделенные признаки экспертизы x_i резиновых смесей и вулканизатов

54 / 58

Условная	Сопро-	Относитель-	Эластич-	Вулканиза-	Содержа-	Условное
прочно-сть	тивление	ное удлине-	ность по	ционные	ние сво-	напряжение
при растя-	раздиру,	ние при раз-	отскоку, %	характери-	бодной	при удли-
жении, МПа	кН/м	рыве, %		стики (по	серы, %	нении 300
				Монсанто)	(мас.)	%,
x_1	x_2	<i>X</i> ₃	<i>X</i> 4	<i>X</i> 5	x_1	x_1

Введенные выше признаки могут быть кластеризованы следующим образом. Первые четыре из них x_1 - x_4 являются количественными признаками положительного эффекта. Последние три из них x_5 - x_7 являются количественными признаками отрицательного эффекта (ПОЭ).

В связи с выделением упомянутых подмножеств признаков, необходимо модифицировать обычно применяемое выражение для обобщенного показателя «качество-цена».

Обобщенный показатель качества. Рассмотрим мультипликативную модель

детерминированного комплексного показателя «качество-цена» [2]:

$$J = \begin{bmatrix} \hat{V}_{\text{efe}} & \frac{\sum_{j} V_{j,\text{efe}} \hat{x}_{j,\text{efe}} + \hat{V}_{\text{fåë}} \\ \frac{\sum_{j} V_{j,\text{efe}} + \hat{V}_{\text{fåë}} \\ \frac{\sum_{i} V_{i,\text{fåë}} \times \hat{x}_{i,\text{fåë}} + \hat{V}_{\text{fåë}} \\ \frac{\sum_{j} V_{l,\text{efe}} + \hat{V}_{\text{fåë}} + \hat{V}_{\text{fåë}} \times \hat{x}_{i,\text{fåë}} \\ \frac{\sum_{j} V_{l,\text{efe}} + \hat{V}_{\text{fåë}} + \hat{V}_{\text{fåë}} + \hat{V}_{\text{fåë}} \\ \times \frac{\hat{V}_{\text{öåf}} \hat{u} \hat{P} \left(x_{\text{öåf}} \hat{u} \right)}{\hat{V}_{\text{efe}} + \hat{V}_{\text{fåë}} + \hat{V}_{\text{fåë}}} = J_{\text{efe}} \cdot J_{\text{öåf}} \hat{u} , \qquad (1)$$

^{*} В числителе приведены значения показателей при введении цинковых белил в виде порошка, в знаменателе — в виде сплава.

где $\hat{V}_{\hat{\mathbf{e}}\hat{\mathbf{i}}\hat{\mathbf{e}}}, \hat{V}_{\hat{\mathbf{e}}\hat{\mathbf{a}}\hat{\mathbf{e}},\hat{\mathbf{i}},\hat{\mathbf{o}}}$ — групповые весовые коэффициенты, определяющие предпочтительность количественных признаков, признаков наличия и качественных признаков. Множества $\left\{V_j, V_i, V_l\right\}$ определяют относительный вклад отдельных признаков (частных критериев); $\hat{P}(x_{\hat{\mathbf{o}}\hat{\mathbf{a}}\hat{\mathbf{i}}\hat{\mathbf{n}}})$ — нормированная функция цены.

Модифицируем показатель (1) применительно к данной задаче. Во-первых, исключим два слагаемых в квадратной скобке, соответствующих признакам наличия и качественным признакам. Во-вторых, введем слагаемое, соответствующее признакам отрицательного эффекта (ПОЭ) в квадратную скобку. В-третьих, положим множитель $\hat{V}_{\delta \hat{a} \hat{i} \hat{a}} = 1$, поскольку в дальнейшем речь пойдет о сравнении изделий, а при этом абсолютная величина $\hat{V}_{\delta \hat{a} \hat{i} \hat{a}}$ значения не имеет. В итоге получим следующую упрощенную формулу:

$$J^{(\hat{\alpha}\hat{a}\hat{a}\hat{a})} = \left[\hat{V}_{\hat{e}\hat{1}\hat{e}} \frac{\sum_{j} V_{j,\hat{e}\hat{1}\hat{e}} \hat{x}_{j,\hat{e}\hat{1}\hat{e}}}{\sum_{j} V_{j,\hat{e}\hat{1}\hat{e}}} + \hat{V}_{\hat{1}\hat{1}\hat{1}} \frac{\sum_{i} V_{i,\hat{1}\hat{1}} \hat{Y} \hat{x}_{i,\hat{1}\hat{1}\hat{Y}}}{\sum_{i} V_{i,\hat{1}\hat{1}\hat{Y}}} \right] \times \frac{\hat{P}\left(x_{\hat{o}\hat{a}\hat{1}\hat{u}}\right)}{\hat{V}_{\hat{e}\hat{1}\hat{e}} + \hat{V}_{\hat{1}\hat{1}\hat{1}\hat{Y}}} . \tag{2}$$

Такой показатель качества является аддитивным и обозначается $J^{(a\ddot{a}\ddot{a})}$. Однако используемая в дальнейшем нормировка признаков должна обеспечить противоположное изменение величины $J^{(a\ddot{a}\ddot{a})}$: при увеличении исходных значений признаков $x_{j,\hat{e}\hat{1}\dot{e}}$ показатель должен возрастать, а при увеличении значений $x_{i,\hat{1}\,\hat{1}\,\acute{Y}}$ — уменьшаться.

Кроме аддитивного показателя (2), предложим и мультипликативную модель комплексного показателя качество-цена, обладающую большей чувствительностью к различию характеристик сравниваемых объектов:

$$J^{(1\text{ offu})} = \left[\frac{\sum_{j} V_{j,\text{eff}}}{\sum_{j} V_{j,\text{eff}}} \hat{X}_{j,\text{eff}}}\right] \left[\frac{\sum_{i} V_{i,\tilde{1}\hat{1}\hat{1}} \hat{Y} X_{i,\tilde{1}\hat{1}\hat{1}}}{\sum_{i} V_{i,\tilde{1}\hat{1}\hat{1}}}\right] \hat{P}(X_{\text{offu}}). \tag{3}$$

Определение нормированных значений признаков. Приведем далее правила нормировки количественных признаков положительного и отрицательного эффектов, а также признака цены последовательно.

1. Нормировка количественных признаков положительного эффекта. Для того чтобы обеспечить однородный вклад различных слагаемых во взвешенные суммы показателей (2), (3), необходимо привести их значения к единому диапазону. Для этого введем следующую нормировку:

$$\hat{x}_j = \frac{x_j}{x_{j, \text{ disc}}}$$
, $j = 1, 2, ..., m$,

где знаменатель — максимальное значение признака по все сравниваемым K объектам экспертизы:

$$x_{j, \text{ áàç}} = \max_{k} x_j^{(k)}, \quad k = 1, 2, ..., K.$$
 (4)

Нормированные таким образом значения признаков принадлежат единичному интервалу $\hat{x}_j \in [0,1]$. Приведем в единой таблице значения признаков и их нормированные значения (табл. 3).

2. Нормировка количественных признаков отрицательного эффекта (ПОЭ). В отличие от формулы (4) выберем в качестве базового объекта для сравнения с другими объектами экспертизы объект с минимальным значением признака по группе сравниваемых объектов:

$$x_{j, \text{ áàc}} = \min_{k} x_{j}^{(k)}, \quad k = 1, 2, ..., K.$$
 (5)

Тогда превышение значения j-го признака для k-го объекта над базовым значением (5) будет характеризоваться нормированным признаком

$$\hat{x}_{j}^{(k)} = \frac{x_{j,\hat{a}\hat{a}\hat{\varsigma}}}{x_{j}^{(k)}}.$$

Значения признаков отрицательного эффекта и результаты их нормировки приведены в трех последних столбцах табл.3.

3. Функция цены. Цена объекта также является признаком отрицательного эффекта, и для ее нормировки используем формулу

$$\hat{P}^{(k)} = \frac{P_{\hat{\mathbf{a}}\hat{\mathbf{a}}\mathbf{c}}}{P^{(k)}},\tag{6}$$

где $P_{\hat{a}\hat{a}\hat{c}}$ — минимальная цена по группе сравниваемых объектов; $P^{(k)}$ — цена k-го объекта экспертизы.

Абсолютные х	, и норми	рованные \hat{x}_i	значения п	ризнаков экспе	ртизы

Показатель		СКД					
		КЦ-1И		НЦ-2		НЦ-4	
№	Наименование показателя	X_i	\hat{x}_i	x_i	\hat{x}_i	x_i	\hat{x}_i
	Призн	аки полох	кительного	эффекта	•	•	
1	Условная прочность при растяжении, МПа	9,1	1,000	9,0	0,989	8.7	0,956
2	Сопротивление раздиру, кН/м	44,3	1,000	25,8	0,582	31,5	0,711
3	Относительное удлинение при разрыве, %	383	1,000	343	0,895	318	0,83
4	Эластичность по отскоку, %	52	1,000	51	0,981	51	0,981
	Призн	аки отри	цательного	эффекта			
5	Вулканизационная характеристика (реометр Монсанто, 150 °C) с, мин	18,7	1,000	21,3	0,877	20,0	0,935
6	Содержание свободной серы, % (мас.)	0,061	0,885	0,059	0,915	0,054	1,000
7	Условное напряжение при удлинении 300 %, МПа	7,8	1,000	7,9	0,987	7,8	1,000

Определение весовых коэффициентов признаков положительного эффекта методом анализа иерархий. Для расчета численных значений показателей качества (2), (3) необходимо определить векторы приоритетов весовых коэффициентов V_{eff} , $V_{\text{T} \, \text{T} \, \text{Y}}$. Для этого воспользуемся методом анализа иерархий [3, 4]. Учитывая относительную важность признаков, составим матрицу парных сравнений A.

При построении матрицы А будем считать, что наиболее значимым признаком является условная прочность при растяжении (ранг равен 1), несколько менее значимым — сопротивление раздиру (ранг равен 2), наименее значимым — эластичность по отскоку (ранг равен 5). Тогда матрица А примет вид

$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0.5 & 1 & 1.5 & 2.5 \\ 0.33 & 0.667 & 1 & 1.667 \\ 0.2 & 0.4 & 0.6 & 1 \end{pmatrix}$$

Определим собственные числа матрицы А из уравнения

$$AV = \lambda V , \qquad (7)$$

где V — искомый вектор весовых коэффициентов. Расчеты показывают, что максимальное собственное число матрицы $\lambda_{\max} = 3,998$. Индекс согласованности ИС = 0,0007, отношение согласованности ОС = 0,0007. Итак, сформированная матрица А оказалась хорошо согласованной.

Определим собственные векторы матрицы парных сравнений А с помощью процедуры eigenvals (A). Первый собственный вектор имеет вид

$$V_{\tilde{n}\tilde{i}\tilde{a}\tilde{n}\tilde{o},1}(A) = (0.845 \ 0.422 \ 0.281 \ 0.169)^{\mathrm{T}}.$$

Разделив первый собственный вектор на сумму его элементов 1,717, получим нормированный вектор приоритетов признаков положительного эффекта:

$$V_{\hat{n}\hat{n}}^T := (0.492 \quad 0.246 \quad 0.164 \quad 0.0984)^T.$$
 (8)

Определение весовых коэффициентов признаков отрицательного эффекта методом анализа иерархий. Учитывая относительную важность признаков, составим матрицу парных сравнений В. При построении матрицы В будем считать, что наиболее значимым признаком является вулканизационная характеристика

(реометр Монсанто, 150 °C) с, мин (ранг равен 1), несколько менее значимым — содержание свободной серы, % (мас.) (ранг равен 3), наименее значимым — условное напряжение при удлинении 300 %, МПа (ранг равен 5). Тогда матрица В примет вид

$$B = \begin{pmatrix} 1 & 3 & 5 \\ 0.33 & 1 & 1.667 \\ 0.2 & 0.6 & 1 \end{pmatrix}$$

Определим собственные числа матрицы В из уравнения (7). Расчеты показывают, что максимальное собственное число матрицы $\lambda_{\max} = 2,996$. Индекс согласованности ИС = 0,0016, отношение согласованности ОС = 0,0028. Итак, сформированная матрица В оказалась хорошо согласованной.

Определим собственные векторы матрицы парных сравнений В с помощью процедуры eigenvals (В). Первый собственный вектор имеет вид

$$V_{\text{fil} \text{ áfiò.1}}(B) = (0.932 \ 0.309 \ 0.186)^{\text{T}}.$$

Разделив первый собственный вектор на сумму его элементов 1,428, получим нормированный вектор приоритетов признаков отрицательного эффекта:

$$V_{\hat{1}\hat{1}\hat{1}\hat{2}} = (0.6526 \quad 0.2169 \quad 0.1305)^{\mathrm{T}}$$
 (9)

Расчет комплексного показателя качество-цена. Как следует из исходной формулы (1), комплексный показатель «качество-цена»

$$J = J_{\hat{\mathrm{e}}\grave{\mathrm{a}}\dot{\mathrm{+}}} \cdot J_{\ddot{\mathrm{o}}\mathring{\mathrm{a}}\acute{\mathrm{n}}}$$
 ,

где $J_{\hat{\mathrm{ea}}_+}$ — обобщенный показатель качества продукции; $J_{\hat{\mathrm{ea}}_1\hat{\mathrm{u}}}$ — функция относительной цены.

Рассчитаем вначале два варианта (аддитивный и мультипликативный) обобщенного показателя качества продукции по формулам (2), (3). Вектор приоритетов количественных признаков положительного эффекта определяется выражением (8), а количественных признаков отрицательного эффекта — выражением (9). Групповые весовые коэффициенты $\hat{V}_{\hat{\mathbf{e}}\hat{\mathbf{r}}\hat{\mathbf{e}}}$, $\hat{V}_{\hat{\mathbf{l}}\hat{\mathbf{l}}\hat{\mathbf{Y}}}$ в формуле (2) выберем равными единице.

Результаты расчетов (табл.4) показывают, что с точки зрения обобщенного показателя качества $J_{\rm ea}$ наилучшая готовая продукция получается на основе высокочистых цинковых белил с содержанием полезного вещества 99,7 % (образец КЦ-1И).

Таблица4

Комплексный показатель «качество-цена	Комплексный	показатель	«качество-пена)
---------------------------------------	-------------	------------	-----------------

Показатели		Образец 1 (КЦ-1И)	Образец 2 (НЦ-2)	Образец 3 (НЦ-4)
Обобщенный показатель ка-	A ддитивный $J_{\hat{\mathrm{e}}\hat{\mathrm{a}}\dot{\mathrm{+}}}^{(\hat{lpha}\ddot{a}\dot{a})}$	0,9875	0,8861	0,9176
чества $J_{\hat{\mathrm{e}}\hat{\mathrm{a}}\div}$	Мультипл. $J_{\hat{\mathrm{e}}\hat{\mathrm{a}}\div}^{(\hat{\mathrm{i}}\; \acute{\mathrm{e}}\ddot{\mathrm{u}}\grave{\mathrm{o}})}$	0,9751	0,7851	0,8404
Функция цены \hat{P}	$J_{\ddot{\mathrm{o}}\mathring{\mathrm{a}}\acute{\mathrm{f}}\hat{\mathrm{u}}}$	0,87	0,94	1,00
Комплексный	Аддитивный $J^{(a\ddot{a}\ddot{a})}$	0,8591	0,8329	0,9176
показатель J	Мультипл. $J^{({ m i}~{ m o}{ m e}{ m u}{ m o})}$	0,8483	0,7379	0,8404

Полученные результаты расчетов подтверждают сделанное ранее предположение о том, что мультипликативный вариант обобщенного показателя качества $J_{\hat{e}\hat{a}\div}$ окажется более чувствительным к различию характеристик сравниваемых изделий. Действительно, аддитивный показатель $J_{\hat{e}\hat{a}\div}^{(\hat{a}\hat{a}\hat{a})}$ 1-го образца

превосходит соответствующий показатель 2-го образца на 3,1 %, а мультипликативный $J_{\hat{\mathbf{e}}\hat{\mathbf{a}}\hat{\mathbf{c}}}^{(1\ \hat{\mathbf{c}}\hat{\mathbf{e}}\hat{\mathbf{u}}\hat{\mathbf{o}})}$ – на 14,9 %.

Цена продукции является одним из признаков отрицательного эффекта и для ее учета используется нормировка (6). Поэтому при сравнении образцов продукции учитывается

не абсолютное значение цены, а ее относительное значение по сравнению с самым дешевым 3-м образцом. Функция относительной цены для этого образца принимает значение 1,00 (см. табл. 4), а для более дорогих образцов — 0,87 и 0,94.

Учитывая большую чувствительность к различию параметров сравниваемых объектов (следовательно, и большую объективность оценки) выберем для окончательной оценки мультипликативную модель комплексного показателя качество-цена. Как следует из расчетов (см. табл. 4), наиболее предпочтительным видом продукции является 1-й образец, полученный на основе высокочистых цинковых белил КЦ-1И с содержанием полезного вещества 99,7 %, несмотря большую на его себестоимость.

ЛИТЕРАТУРА

- 1. Шутилин, Ю.Ф. О качестве резин, содержащих цинковые белила различных марок [Текст] / Ю.Ф. Шутилин, И.Г. Пугач, О.В. Карманова // Каучук и резина. 1996. № 2. С. 43-49.
- 2. Бухарин, С.В. Многокритериальная экспертиза ERP-систем с учетом стоимостновнедренческих характеристик [Текст] / С.В. Бухарин, А.В. Мельников // Вестник Воронежского института МВД России. 2011. № 3. С. 135-143.
- 3. Саати, Т. Принятие решений: метод анализа иерархий [Текст] / Т. Саати. М.: Радио и связь, 1993. 278 с.
- 4. Дилигенский, Н.В. Нечеткое моделирование и многокритериальная оптимизация производственных систем в условиях неопределенности: технология, экономика, экология [Текст] / Н.В. Дилигенский, Л.Г. Дымова, П.В. Севастьянов. М.: Издательство Машиностроение 1, 2004. 397 с.