Оригинальная статья/Original article

УДК 66-922.2

DOI: http://doi.org/10.20914/2310-1202-2016-2-218-222

Бутадиен-α-метилстирольный термоэластопласт, синтез и свойства

 Алена В. Фирсова,
 1
 vammp.004@mail.ru

 Ольга В. Карманова,
 1
 karolga@mail.ru

 Валентина В. Ситникова,
 2
 vfniisk2007@yandex.ru

 Евгений В. Блинов
 2
 vfniisk2007@yandex.ru

Реферат. В ряду диен-винилароматических блок-сополимеров особое место занимает бутадиен-а-метилстирольный блок – сополимер – термоэластопласт (ТЭП ДМСТ-Р), содержащий в качестве пластичного – поли-α-метилстирольный блок и эластичного – полибутадиеновый блок. ТЭП ДМСТ-Р отличается повышенной теплостойкостью, эластичностью, сопротивлением износу по сравнению с бутадиенстирольными термоэластопластами (ТЭП ДСТ). Проведён синтез блок-сополимеров бутадиена и а-метилстирола, который имеет ряд особенностей по сравнению с синтезом на основе бутадиена и стирола, что связано с поведением а-метилстирола в анионной полимеризации высокая скорость полимеризации в полярных средах и низкая скорость реакции в углеводородных растворителях. Технологические сложности при выпуске ДМСТ-Р обусловлены неполной конверсией α-метилстирола и необходимостью поддерживать высокую концентрацию от 60 до 80% а-метилстирола в шихте при синтезе 1-го блока под влиянием анионного катализатора н-бутиллития (н-BuLi). Установлено, что большое значение имеет низкая предельная температура полимеризации αметилстирола (+61 °C) и связанная с этим обратимость реакции и высокая концентрация остаточного мономера. Выявлено, что высокой скорости полимеризации а-метилстирола можно достичь проведением реакции в углеводородном растворителе с добавками полярных соединений, таких как тетрагидрофуран (ТГФ) и метилтретбугиловый эфира (МТБЭ). Изучены условия синтеза ДМСТ-Р. Представлена кинетика полимеризации для первого блока ДМСТ-Р. Проведён анализ физико-механических показателей образцов ДМСТ-Р. Оптимальное содержание связанного о-метилстирола обеспечивает блок-сополимеру хороший комплекс свойств в сравнительно широком температурном интервале. При увеличении содержания связанного α-метилстирола повышается прочность при разрыве при нормальной и повышенной температуре, твёрдость и жёсткость полимера; снижается относительное удлинение и эластичность.

Ключевые слова: термоэластопласт, α -метилстирол, н-бутиллитий, тетрагидрофуран, метилтретбутиловый эфир, тетраэтоксисилан, циклогексан, показатель текучести расплава

Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

Alena V. Firsova, 1 vammp.004@mail.ru
Olga V. Karmanova, 1 karolga@mail.ru
Valentina V. Sitnikova, 2 vfniisk2007@yandex.ru
Evgeniy V. Blinov 2 vfniisk2007@yandex.ru

Summary. Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST) occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST). The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst n-butyllithium (n-BuLi) and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it's technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 °C), the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF) and methyl tert-butyl ether (MTBE). The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

Keywords: thermoplastic elastomer, α-methylstyrene, n-butyllithium, tetrahydrofuran, methyl tertiary butyl ether, tetraethoxysilane, cyclohexane, melt index

Для цитирования

Фирсова А. В.,. Карманова О. В, Ситникова В. В., Блинов Е. В. Бутадиен-α-метилстирольный термоэластопласт, синтез и свойства // Вестник ВГУИТ. 2016. № 2. С 218–222. doi:10.20914/2310-1202-2016-2-218-222

For citation

Firsova A. V., Karmanova O. V., Sitnikova V. V., Blinov E. V. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer. *Vestnik VSUET* [Proceedings of VSUET]. 2016. no 2 pp. 218–222 (in Russ.). doi:10.20914/2310-1202-2016-2-218-222

¹ кафедра химии и химической технологии органических соединений и переработки полимеров, Воронеж, гос. ун-т. инж. техн., Ленинский пр-т, 14, г. Воронеж, Россия

² Воронежский филиал НИИСК, ул. Менделеева, 3Б, г. Воронеж, 394014, Россия

¹ chemistry and chemical technology of organic com-pounds and polymer processing department, Voronezh state university of engineering technologies, Leninsky Av., 14 Voronezh, Russia

² Voronezh branch NIISK, Mendeleev street, 3B Voronezh, 394014, Russia

Ввеление

В настоящее время, получение полимерной теплостойкой электроизоляционной композиции с высокими значениями показателей электрической прочности, удельного объёмного сопротивления и дугостойкости, а также имеющей высокие значения физикомеханических показателей условной прочности и относительного удлинения при разрыве является главной задачей.

Перспективным направлением в области синтеза диенвинил-ароматических термоэластопластов (ТЭП) является использование поли-α-метилстирола для получения пластичных блоков. Вследствие высокой температуры поли-α-метилстирола (173 °C) стеклования термоэластопласты на основе бутадиена и α-метилстирола выгодно отличаются от термоэластопластов с полистирольными блоками более широким температурным интервалом сохраняя прочностные и эластические свойства материалов. Оптимальное содержание связанного α-метилстирола, обеспечивает хороший комплекс свойств ТЭП ДМСТ-Р и эффективное использование в составах дорожного битума. При увеличении содержания связанного α-метилстирола повышаются прочность при растяжении в условиях комнатной и повышенной температур, твёрдость, жёсткость и остаточное удлинение полимера, снижаются относительное удлинение и эластичность.

Однако при выпуске ДМСТ-Р имеются некоторые технологические сложности, связанные с неполной конверсией α -метилстирола и необходимостью поддерживать высокую концентрацию α -метилстирола на стадии синтеза 1-го блока. Достаточно высокая скорость полимеризации α -метилстирола может достигаться путём проведения реакции в углеводородном растворителе при повышенной концентрации мономера или полимеризацией с добавками полярных соединений, например, таких как тетрагидрофуран.

1.1 Условия проведения синтеза

Синтез ТЭП ДМСТ-Р проводился в опытном цехе по двухаппаратной схеме. Синтез 1-го поли- α -метилстирольного блока проводился в аппарате ёмкостью $0,2~{\rm M}^3$; 2-го блока (полимеризация бутадиена) и «сшивку» двублочного «живущего» сополимера — в аппарате объёмом $2~{\rm M}^3$.

В полимеризатор ёмкостью 0,2 м³, снабжённый мешалкой якорного типа, циркуляционным насосом, рубашкой для теплоносителя,

загружался из дозеров растворитель, α -метилстирол, затем подавался ТГФ из переносного контейнера и раствор н-ВиLi из дозера на титрование шихты до ярко-вишнёвого цвета. Затем дозировалось расчётное количество н-ВиLi на полимеризацию. Температура реакционной массы поддерживается на уровне 18–22 °С путём подачи хладагента в термостатирующую рубашку аппарата. Полимеризация α -метилстирола протекала в течение 3–4-х часов до конверсии α -метилстирола 70–72%.

После достижения заданной конверсии α-метилстирола раствор 1-го блока переводился во второй аппарат ёмкостью 2 м³ с предварительно приготовленной бутадиеновой шихтой с концентрацией 16-18%. Начальная температура реакционной массы в аппарате составляла 10-12 °C. После подачи 1-го блока реакционная масса нагревалась до температуры 25-29 °C, полимеризация бутадиена протекала в адиабатическом режиме с повышением температуры до 70-85 °C в течение 20-40 минут. Через 5-7 минут после достижения максимальной температуры в аппарат из переносного контейнера дозировалось расчётное количество сшивающего агента ТЭОС. Реакция «сшивки» протекала в течение 60–90 минут при температуре 60–70 °C.

После завершения синтеза ДМСТ-Р в полимеризат вводилось расчётное количество стабилизатора агидола-2. Заправленный полимеризат подавался в водный дегазатор производительностью 15 кг/час. С целью получения неслипающейся крошки с размером частиц 3–5 мм в дегазатор каждые 15 мин дозировался антиагломератор — хлористый кальций — 0,5 л 10%-го раствора. Сушка — в конвейерной сушилке при температуре $\approx 100\,^{\circ}\mathrm{C}$.

В качестве инициирующей системы использовался комплекс н-BuLi - $T\Gamma\Phi$, который применяется в промышленном производстве $T\Pi$. Мольное соотношение $T\Gamma\Phi$: н-BuLi = 1–2: 1.

Для получения разветвлённого ТЭП ДМСТ-Р был выбран четырехфункциональный сочетающий агент тетраэтоксисилан (ТЭОС), широко применявшийся в опытном производстве ТЭП В. ф. НИИСК.

Синтез ТЭП производился в среде углеводородного растворителя — циклоалифатическом (циклогексан) или в смеси с алифатическим (гексан, нефрас). В настоящей работе растворитель содержал более 70% циклогексана, что обеспечивало хорошую растворимость поли-α-метилстирольного блока при высокой концентрации шихты (>60%) 1-го блока.

С целью достижения максимально возможной (~70–75%) конверсии α-метилстирола (при синтезе 1-го блока) необходимо обеспечить, по крайней мере, два условия:

- концентрация α -метилстирола в растворителе более 60% (оптимально 65–75%);

- температура полимеризации не выше 25 °C (оптимально 16–22 °C).

На рис. 1 представлена кинетика полимеризации I-го поли – α -метилстирольного блока с мольными соотношениями $T\Gamma\Phi$: н-BuLi = 1,58–1,71.

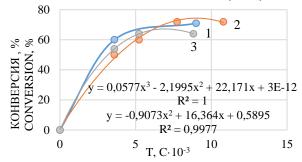


Рисунок 1. Зависимость конверсии α -метилстирола от времени полимеризации при соотношении ТГФ/ α -BuLi: 1-1.58; 2-1.71; 3-1.63

Figure 1. The determination of conversion alpha-methylstyrene by the time of polymerization in a ratio of THF/n-BuLi: 1 - 1,58; 2 - 1,71; 3 - 1,63

После завершения полимеризации бутадиена в реакционную массу вводился при температуре 67–78 °С сшивающий агент – раствор ТЭОС из расчёта эквивалентное соотношение ТЭОС: H-BuLi (общий расход) = (0.9-1.2):1.0.

С целью повышения эффективности «сшивки» подачу ТЭОС осуществляли в два приёма, увеличив общее время «сшивки» до 2–2,5 час. Основное количество ТЭОС дозировалось на 1-й приём, на 2-й приём – сверх стехиометрии, чтобы гарантировать достаточное количество функциональных групп для «сшивки».

Физико-механические показатели ДМСТ-Р контролировались в каждом опыте.

Пробы полимеризата отбирались из аппарата на различных стадиях синтеза, заправлялись агидолом-2 (~1%) и выделялись на лабораторном водном дегазаторе. «Сшивку» проб осуществляли на вальцах при температуре 80–90 °C.

1.2 Результаты исследований

В таблице 1 приведены результаты физико-механических испытаний проб ДМСТ-Р.

Таблица 1

Table 1.

Физико-механические свойства образцов ДМСТ-Р

The physico-mechanical properties of the DMST samples

Наименование показателей	Значение показателей										
Name of indicators	Value indicators										
№ опыта	4	5		6	7		9				
experience number	4			U							
«сшивка»	2-ая	1-ая	2-ая	2-ая	до	2-ая	before	1-ая	2-ая		
"crosslinking"	2-nd	1-st	2-nd	2-nd	сшивки	2-nd	crosslinking	1-st	2-nd		
1.ПТР, г/10 мин, 190 °С, нагрузка											
1. The MFR, g/10 min, 190 °C load											
– 5 кгс kg	>100	1,9	1,8	13,6	2,2	2,0	0,6	0,4	0,4		
– 21 кгс kgf	/100	38,6	29,3	>100	43,3	>100	16,7	10,0	12,8		
2. Условная прочность при растяжении, кгс/см ²	32	282	303	267	172	170	179	174	218		
2. Tensile strength, kgf / cm ²	32	202	303	207	1/2	170	179	1/4	210		
3. Относительное удлинение при разрыве,%	810	1020	993	840	1045	1020	920	1020	963		
3. Elongation at break,%	810	1020	773	040	1043	1020	920	1020	903		
4. Относительная остаточная деформация,%	20	21	40	28	52	40	36	50	40		
4. Relative residual deformation,%	20	21	40	20	32	40	30	30	40		
5. Эластичность,%	41	_	48	43	45	48	50	50	48		
5. Elasticity,%	41	-	40	+3	43	+0	50	50	+0		
6. Твёрдость, усл. ед.	26	_	65	59	65	57	60	67	64		
6. Hardness, standard units	20	_	03	39	0.5	51	00	07	04		

Низкомолекулярный полимер (оп. № 4) с характеристической вязкостью 0,57 дл/г и высокой текучестью не обладает прочностью и может быть использован в смеси с высокомолекулярными полимерами для корректировки ПТР (показатель текучести расплава).

Как показывают экспериментальные данные процесс «сшивки» двублочника в основном завершается на 1-ой стадии (снижается текучесть, повышается прочность). Вторая «сшивка» в ряде случаев, ещё более повышала прочность и, вероятно, ускоряла релаксационные процессы в полимере.

Необходимо отметить, что в опытах № 7 и 9 пробы ДМСТ-Р до «сшивки» и после 1-ой «сшивки» имелись сопоставимые значения прочности (около 170 кгс/см²) и ПТР. Только после 2-ой «сшивки» значение прочности превысило 210 кгс/см².

В ряде синтезов использовали вместо ТГФ другой электронодонор — метилтретбутиловый эфир (МТБЭ). Дозировка МТБЭ была увеличена в 2–3 раза с целью обеспечения высокой скорости полимеризации α -метилстирола. При этом мольное соотношение МТБЭ: μ -Ви μ = 2,3–4,0, тогда как в случае использования ТГФ более высокая скорость полимеризации достигается при существенно пониженном мольном соотношении ТГФ: μ -Ви μ = 1,5–1,7.

При синтезе 1-го блока 70%-я конверсия α-метилстирола достигалась за 4 часа, молекулярная масса соответствовала дозировке н-ВuLi. Синтез

2-го блока протекал активно с повышением температуры в адиабатическом режиме (28–87)°С.

«Сшивку» проводили в две стадии. Эффективность «сшивки» оценивали по характеристической вязкости полимера до и после «сшивки». Значение характеристической вязкости полимера после «сшивки» увеличилось ~ в 1,4 раза.

В таблице 2 приведены физико-механические показатели образцов ДМСТ-Р, синтезированных на инициирующей системе МТБЭ – н-ВиLi. Как показывают данные таблицы 2, двублочный сополимер до «сшивки» обладал высокой текучестью и практически не имел прочности. В результате «сшивки» двублочника образующийся трёхблочный разветвлённый ТЭП ДМСТ-Р имел высокую прочность более 240 кгс/см² и хорошую текучесть – ПТР ~ 4–7 г./10 мин (T= 190 °C, нагрузка 5 кгс), что свидетельствует о высокой эффективности «сшивки» в условиях выбранного режима.

Физико-механические свойства образцов ДМСТ-Р

Table 2

Таблица 2

The physico-mechanical properties of the DMST samples

Наименование показателей	Значение показателей									
Name of indicators	Value indicators									
№ опыта	1			1 + 3						
experience number	1			_						
«сшивка»	before	2-ая	before	1-ая 2-ая		усредн.				
"crosslinking"	crosslinking	2-nd	crosslinking	1-st	2-nd	average				
1. ПТР, г/10 мин. 190 °С, нагрузка										
1. The MFR, g/10 min, 190 °C load										
– 5 кгс kg	36,1	7,6	34	5,5	4,2	4,6				
– 21,6 кгс kgf	>100	51	>100	50	43	43				
2. Условная прочность при растяжении, кгс/см ²	22	244	10		208	245				
² Tensile strength, kgf / cm ²	22	244	10		208	243				
3. Относительное удлинение при разрыве,%	1042	972	110		1020	967				
3. Elongation at break,%	1042	912	110		1020	967				
4. Относительная остаточная деформация,%	116	34	36		42	38				
4. Relative residual deformation,%	110	34	30		42	38				
5. Эластичность,%	33	45			48	53				
5. Elasticity,%	33	43	-		40	33				
6. Твёрдость, усл. ед.	30	55			56	48				
6. Hardness, standard units	30	33	-		56	48				
7. Связанный α-метилстирол,%	36	36	36		36	36				
7. Bound α-methylstyrene,%	30	30	30		30	30				
8. Характеристическая вязкость, дл/г	0.45	0.64	0.56		0.72	0.72				
8. Intrinsic viscosity, dl/g	0,45	0,64	0,56		0,72	0,73				

Заключение

Показано, что при синтезе опытных образцов ДМСТ-Р по духаппаратной технологической схеме с использованием каталитических систем как н-BuLi/ Γ или н-BuLi/ Γ , в обоих случаях достигаются заданные свойства ДМСТ-Р, соответствующие ТУ 38103585–85.

Установлено, что тетраэтоксисилан, выбранный в качестве «сшивающего» агента обеспечивает высокую эффективность «сшивки».

Оптимальный состав растворителя при этом должен соответствовать соотношению циклогексан: нефрас = (80–70) : (20–30)% масс.

ЛИТЕРАТУРА

- 1 Пат. № W02014142637 (A1), KZ, C08K13/04, C08L23/06. Способ получения термоэластопластов / Иманов А., Мухтар С., Сарсенбаева А., Нуркенов Н., Искужин А. № WO2013KZ00003 20130314; Заявл. 14.03.2013; Опубл. 18.09.2014.
- 2 De Rosa C., Auriemma F. Single site metalorganic polymerization catalysis as a method to probe the properties of polyolefins // Polymer chemistry. 2011. V. 2. № 10. P. 2155–2168. DOI: 10.1039/c1py00129a
- 3 Ахметов И.Г. и др. Кинетика полимеризации и молекулярные характеристики литиевого полибутадиена: влияние концентрации толуола и гексена-1 // Каучук и резина. 2010. № 3. С. 2–4.
- 4 Ахунова Р.Р. и др. Модифицирующая добавка для дорожного битума // Электронный научный журнал нефтегазовое дело. 2013. № 2. С. 359–369.
- 5 Подкопаева С.В., Хромых Ё.А. Обоснование выбора технологического режима синтеза дивинил-стирольных термоэластопластов // Промышленное производство и использование эластомеров. 2014. № 2. С. 28–30.

СВЕДЕНИЯ ОБ АВТОРАХ

Алена В. Фирсова аспирант, кафедра химии и химической технологии органических соединений и переработки полимеров, Воронеж, гос. ун-т. инж. техн., Ленинский пр-т, 14, г. Воронеж, Россия, vammp.004@mail.ru

Ольга В. Карманова д.т.н., профессор, кафедра химии и химической технологии органических соединений и переработки полимеров, Воронеж. гос. ун-т. инж. техн., Ленинский пр-т, 14, г. Воронеж, Россия, karolga@mail.ru

Валентина В. Ситникова к.х.н., старший научный сотрудник, Воронежский филиал НИИСК, ул. Менделеева, 3Б, г. Воронеж, 394014, Россия, vfniisk2007@yandex.ru

Евгений В. Блинов директор, Воронежский филиал НИИСК, ул. Менделеева, 3Б, г. Воронеж, 394014, Россия, vfniisk2007@yandex.ru

КРИТЕРИЙ АВТОРСТВА

Алена В. Фирсова обзор литературных источников по исследуемой проблеме, провел эксперимент, выполнил расчеты Ольга В. Карманова консультация в ходе исследования Валентина В. Ситникова предложил методику проведения эксперимента и организовал производственные испытания Евгений В. Блинов написал рукопись, корректировал её до подачи в редакцию и несет ответственность за плагиат

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ПОСТУПИЛА 28.03.2016

ПРИНЯТА В ПЕЧАТЬ 26.04.2016

REFERENCES

- 1 Imanov A., Mukhtar S., Sarsenbaeva A., Nurkenov N. et al. Sposob polucheniya termoelastoplastov [Method for producing thermoplastic elastomers] Patent KZ, no. WO/2014/142637, 2014. (in Russian)
- 2 De Rosa C., Auriemma F. Single site metalorganic polymerization catalysis as a method to probe the properties of polyolefins. Polymer chemistry, 2011, vol. 2, no. 10, pp. 2155–2168. DOI: 10.1039/c1py00129a
- 3 Akhmetov I.G., Boreyko N.P., Bourganov R.T., GluchovskoiV.S. et al. Kinetic parameters of "lithium" polybutadiene polymerization and its molecular characteristics the influence of toluene and hexane-1 concentration. *Kauchuk I rezina*. [Rubber], 2010, no. 3, pp.2–4. (in Russian).
- 4 Akhunova R.R., Biglova R.Z., Talipov R.F., Tsadkin M.A. et al. A modifying additive to road bitumen. *Elektronnyi nauchnyi zhurnal neftegazovoe delo*. [Electronic science journal of the oil and gas business], 2013, no. 2, pp. 359–369. (in Russian).
- 5 Podkopaeva S.V., Khromykh E.A. Justification of the choice of the technological mode of production of butadiene-styrene thermoplastic elastomer. *Promyshlennoe proizvodstvo i is-pol'zovanie elastomerov*. [Industrial production and use of elastomers], 2014, no. 2, pp. 28–30. (in Russian)

INFORMATION ABOUT AUTHORS

Alena V. Firsova graduate student, chemistry and chemical technology of organic compounds and polymer processing department, Voronezh state university of engineering technologies, Leninsky Av., 14 Voronezh, Russia, vammp.004@mail.ru

Olga V. Karmanova D. t. sc., professor, chemistry and chemical technology of organic compounds and polymer processing department, Voronezh state university of engineering technologies, Leninsky Av., 14 Voronezh, Russia, karolga@mail.ru

Valentina V. Sitnikova Ph. D., senior researcher, Voronezh branch NIISK, Mendeleev street, 3B Voronezh, 394014, Russia, vfniisk2007@yandex.ru

Evgeniy V. Blinov director, Voronezh branch NIISK, Mendeleev street, 3B Voronezh, 394014, Russia, vfniisk2007@yandex.ru

CONTRIBUTION

AlenaV. Firsova review of the literature on an investigated problem, conducted an experiment, performed computations **OlgaV. Karmanova** consultation during the study

Valentina V. Sitnikova proposed a scheme of the experiment and organized production trials

Evgeniy V. Blinov wrote the manuscript, correct it before filing in editing and is responsible for plagiarism

CONFLICT OF INTEREST

The authors declare no conflict of interest.

RECEIVED 3.28.2016

ACCEPTED 4.26.2016