The use of carbon nanotubes to create materials that absorb electromagnetic radiation and electrodes of supercapacitors
https://doi.org/10.20914/2310-1202-2020-1-267-272
Abstract
About the Authors
A. V. ShchegolkovRussian Federation
Cand. Sci. (Engin.), associate professor, technique and production technology of nanoproducts department, Technical University, Sovetskaya str., 106, Russia
A. V. Shchegolkov
graduate student, technique and production technology of nanoproducts department, Tambov State Technical University
F. F. Komarov
Dr. Sci. (Phys.-Math.), professor, laboratoty of elioniks, Kurchatova Av., 7, 220045, Belarus
I. D. Parafimovich
junior researcher, laboratoty of elioniks, Kurchatova Av., 7, 220045, Belarus
O. O. Milchanin
Cand. Sci. (Phys.-Math.), senior researcher, laboratoty of elioniks, Kurchatova Av., 7, 220045, Belarus
A. V. Kobelev
Cand. Sci. (Engin.), associate professor, electric power department, Sovetskaya str., 106, Russia
References
1. Ufimtsev P.Ya. The method of boundary waves in the physical theory of diffraction. Moscow, Sovetskoye radio, 1962. 243 p. (in Russian).
2. Rozanov N. Fundamental restriction for the width of the working range of radar absorbing coatings. Radio engineering and electronics. 1999. vol. 44. no. 5. pp. 526–530. (in Russian).
3. Mitsmakher M.Y., Torganov V.A. Microwave anechoic chambers. Moscow, Radio i svyaz', 1982. 128 p. (in Russian).
4. Buday A.G., Knysh V.P., Aleshkevich N.N., Gromyko A.V. et al. Structural Optimization of Pyramidal Type Radar Absorbing Coatings. Applied Problems of Optics, Computer Science, Radiophysics and Condensed Matter Physics: Materials of the International Scientific and Practical Conference. Minsk, NII PFP named after A.N. Sevchenko, 2013. pp. 130–132. (in Russian).
5. Chen J., Hutchings I.M., Deng T., Bradley M.S. et al. The effect of carbon nanotube orientation on erosive wear resistance of CNT-epoxy based composites. Carbon. 2014. vol. 73. pp. 421–431. doi: 10.1016/j.carbon.2014.02.083
6. Al-Saleh M.H., Al-Anid H.K., Hussain Y.A. CNT/ABS nanocomposites by solution processing: Proper dispersion and selective localization for low percolation threshold. Composites Part A: Applied Science and Manufacturing. 2013. vol. 46. pp. 53–59. doi: 10.1016/j.compositesa.2012.10.010
7. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology. 2009. vol. 69. no. 10. pp. 1486–1498. doi: 10.1016/j.compscitech.2008.06.018
8. Bychanok D., Gorokhov G., Meisak D., Plyushch A. et al. Exploring Carbon Nanotubes/BaTiO3/Fe3O4 Nanocomposites as Microwave Absorbers. Progress In Electromagnetics Research C. 2016. vol. 66. pp. 77–85. doi: 10.1109/ICEAA.2015.7297071
9. Lota K., Sierczynska A., Acznik I. Effect of aqueous electrolytes on electrochemical capacitor capacitance. Chemik. 2013. vol. 67. no. 11. pp. 1138–1145.
10. Chen J.H., Li W.Z., Wang D.Z., Yang S.X. et al. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon. 2002. vol. 40. no. 8. pp. 1193–1197.
Review
For citations:
Shchegolkov A.V., Shchegolkov A.V., Komarov F.F., Parafimovich I.D., Milchanin O.O., Kobelev A.V. The use of carbon nanotubes to create materials that absorb electromagnetic radiation and electrodes of supercapacitors. Proceedings of the Voronezh State University of Engineering Technologies. 2020;82(1):267-272. (In Russ.) https://doi.org/10.20914/2310-1202-2020-1-267-272