The influence of heat treatment on the properties of the catalyst for the synthesis of carbon nanotubes
https://doi.org/10.20914/2310-1202-2020-1-237-246
Abstract
About the Authors
E. A. BurakovaRussian Federation
Cand. Sci. (Engin.), associate professor, technique and technology of production of nanoproducts department, 106, Sovetskaya Str., Tambov, Russia
G. S. Besperstova
graduate student, technique and technology of production of nanoproducts department, 106, Sovetskaya Str., Tambov, Russia
M. A. Neverova
applicant, technique and technology of production of nanoproducts department, 106, Sovetskaya Str., Tambov, Russia
A. G. Tkachev
Dr. Sci. (Engin.), professor, technique and technology of production of nanoproducts department, 106, Sovetskaya Str., Tambov, Russia
N. A. Chapaksov
graduate student, technique and technology of production of nanoproducts department, 106, Sovetskaya Str., Tambov, Russia
A. V. Rukhov
Dr. Sci. (Engin.), associate professor, chemistry and chemical technology department, 106, Sovetskaya Str., Tambov, Russia
References
1. Rakov E.G. Nanotubes and fullerenes. Мoscow, Universitetskaya kniga, Logos, 2006. 376 p. (in Russian).
2. Esawi A.M.K., Morsi K., Sayed A. et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites Part A: Applied Science and Manufacturing. 2011. vol. 42. no. 3. pp. 234–243. doi: 10.1016/j.compositesa.2010.11.008
3. Zare Y., Rhee K.Y. The effective conductivity of polymer carbon nanotubes (CNT) nanocomposites. Journal of Physics and Chemistry of Solids. 2019. vol. 131. pp. 15–21. doi: 10.1016/j.jpcs.2019.03.006
4. Kulmeteva V.B., Maltsev I.A. Effect of specification catalytic pyrolysis of ethanol vapor on characteristic of carbon nanotubes. Digital scientific journal. 2014. vol. 6. Available at: http://www.science-education.ru/pdf/2014/6/739.pdf
5. Motaraghe S., Kini J.M., Schulz S.E. et al. Effects of catalyst configurations and process conditions on the formation of catalyst nanoparticles and growth of single-walled carbon nanotubes. Microelectronic Engineering. 2017. vol. 167. pp. 95–104. doi: 10.1016/j.mee.2016.11.007
6. Shah K.A., Tali B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing. 2016. vol. 41. pp. 67–82. doi: 10.1016/j.mssp.2015.08.013
7. Lin J., Yang Y., Zhang H. et al. Carbon nanotube growth on titanium boride powder by chemical vapor deposition: Influence of nickel catalyst and carbon precursor supply. Ceramics International. 2020. doi: 10.1016/j.ceramint.2020.02.002
8. Pahomov N.A. The scientific basis for the preparation of catalysts: an introduction to theory and practice. Novosibirsk, SO RAN, 2011. 262 p. (in Russian).
9. Guo Y., Zhai G., Ru Y. at al. Effect of different catalyst preparation methods on the synthesis of carbon nanotubes with the flame pyrolysis method. AIP Advances. 2018. vol. 8. 035111. doi: 10.1063/1.5020936
10. Yao C., Bai W., Geng L. et al. Experimental study on microreactor-based CNTs catalysts: Preparation and application. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019. vol. 583. 124001. doi: 10.1016/j.colsurfa.2019.124001
11. Acomb J.C., Wu C., Williams P.T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Applied Catalysis b-Environmental. 2016. vol. 180. pp. 497–510. doi: 10.1016/j.apcatb.2015.06.054
12. Sivakumar V.M., Abdullah A.Z., Mohamed A.R. et al.Optimized parameters for carbon nanotubes synthesis over Fe and Ni catalysts via methane CVD. Reviews on advanced materials science. 2011. vol. 27. pp. 25–30.
13. Ganiyu S.A., MurazaO., Hakeem A.S. et al. Carbon nanostructures grown 3D silicon carbide foams: Role of intermediate silics layer and metal growth. Chemical Engineering Journal. 2014. vol. 258. pp. 110–118. doi: 10.1016/j.cej.2014.05.150
14. Magrez A., Seo J.W., Smajda R. et al. Catalytic CVD synthesis of carbon nanotubes: Towards high yield and low temperature growth. Materials. 2010. vol. 3. no. 11. pp. 4871–4891. doi: 10.3390/ma3114871
15. Skichko E.A., Lomakin D.A., Gavrilov Y.V. et al. An experimental study of the kinetic laws of the synthesis of carbon nanotubes by catalytic pyrolysis of gas mixtures of variable composition. Fundamental research. 2012. no. 3–2. pp. 414–416. (in Russian).
16. Yao D., Zhang Y., Williams P.T. et al. Co-production of hydrogen and carbon nanotubes from realworld waste plastics: Influence of catalyst composition and operational parameters. Applied Catalysis B: Environmental. 2018. vol. 221. pp. 584–597. doi: 10.1016/j.apcatb.2017.09.035
17. Al-Fatesh A.S., Fakeeha A.H., Ibrahim A.A. et al. Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature. Journal of Saudi Chemical Society. 2018. vol. 22. no. 2. pp. 239–247. doi: 10.1016/j.jscs.2016.05.001
18. Yao D., Zhang Y., Williams P.T. et al. Co-production of hydrogen and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters. Applied Catalysis B: Environmental. 2018. vol. 221. pp. 584–597. doi: 10.1016/j.apcatb.2017.09.035
19. Postnov V.N., Novikov A.G., Romanychev A.I. A method of producing fibrous carbon structures by catalytic pyrolysis. Patent RF, no. 2427674, 2011. (in Russian).
20. Shlyahova E.V., Oktorub A.V., Yudanov N.F. et al. The method of producing carbon nanotubes. Patent RF, no. 2397951, 2010. (in Russian).
21. Xu X., Huang S., Yang Z. et al. Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe–Mo/MgO catalyst. Materials Chemistry and Physics. 2011. vol. 127. no. 2. pp. 379–384. doi: 10.1016/j.matchemphys.2011.02.028
22. Liu H., Zhang Y., Li R. et al. Effects of bimetallic catalysts on synthesis of nitrogen-doped carbon nanotubes as nanoscale energetic materials. Particuology. 2011. vol. 9. no. 5. pp. 465–470. doi: 10.1016/j.partic.2011.02.009
23. Wang G., Wang J., Wang H. et al. Preparation and evaluation of molybdenum modified Fe/MgO catalysts for the production of single-walled carbon nanotubes and hydrogen-rich gas by ethanol decomposition. Journal of Environmental Chemical Engineering. 2014. vol. 2. no. 3. pp. 1588–1595. doi: 10.1016/j.jece.2014.05.021
24. Qin S., Zhang C., Xu J. et al. Fe–Mo interactions and their influence on Fischer–Tropsch synthesis performance. Applied Catalysis A: General. 2011. vol. 392. no. 1–2. pp. 118–126. doi: 10.1016/j.apcata.2010.10.032
25. Wang G., Wang J., Wang H. et al. Preparation and evaluation of molybdenum modified Fe/MgO catalysts for the production of single-walled carbon nanotubes and hydrogen-rich gas by ethanol decomposition. Journal of Environmental Chemical Engineering. 2014. vol. 2. no. 3. pp. 1588–1595. doi: 10.1016/j.jece.2014.05.021
26. Zaramenskih K.S. Carbon Nanotubes for Ceramic Composites: abstract doctor of chemical sciences. Moscow, 2011. 18 p. (in Russian)
27. Karima M., Badiei A., Zarabadi-Poor P. The impact of cadmium loading in Fe/alumina and synthesis temperature on carbon nanotubes growth by chemical vapour deposition method. J. Sci. Islam. Repub. Iran. 2015. vol. 26. no. 1. pp. 17–24.
28. Awadallah A.E. Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition. Chemical Papers. 2015. vol. 69. no. 2. doi: 10.1515/chempap2015–0029
29. Krasnikov, D.V. The formation of active centers of catalysts in the synthesis of multilayer carbon nanotubes with controlled properties. Novosibirsk, 2015. 156 p. (in Russian).
30. Burakova E.A., Besperstova G.S., Neverova M.A. et al. Features of obtaining the catalyst for the synthesis of carbon nanotubes. Proceedings of VSUET. 2019. vol. 81. no. 2. pp. 261–267. doi: 10.20914/2310–1202–2019–2–261–267 (in Russian).
31. Wang G., Wang J., Wang H. et al. Preparation and evaluation of molybdenum modified Fe/MgO catalysts for the production of single-walled carbon nanotubes and hydrogen-rich gas by ethanol decomposition. Journal of Environmental Chemical Engineering. 2014. vol. 3. pp. 1588–1595. doi: 10.1016/j.jece.2014.05.021
32. Korzanov V.S., Ketov A.A. Investigation of the thermal behavior of compounds. Bulletin of Perm University. Series: chemistry. 2012. no. 2 (6). pp. 48–54. (in Russian).
33. Romankov P.G., Kurochkina M.I., Mozzherin Y.Ya. et al. Processes and apparatuses of the chemical industry: Textbook for technical schools. L., Himiya, 1989. 560 p. (in Russian).
34. Ruhov A.V. Features of determining the length of carbon nanotubes. Graphene and related structures: synthesis, production and application. Materials of the II International Scientific and Practical Conference. 2017. pp. 431–433. (in Russian).
35. Dyachkova T.P., Khan Y.A., Orlova N.V., Kondrashov S.V. Oxidation of multilayer carbon nanotubes in hydrogen peroxide vapor: patterns and effects. Bulletin of TSTU. 2016. vol. 2. no. 2. pp. 323–333 (in Russian).
36. Tugolukov E.N., Al-Sharif A.J., Dyachkova T.P., Burakova E.A. Investigation of the thermal conductivity of nanomodified liquids. Bulletin of TSTU. 2019. vol. 25. no. 4. pp. 323–333. (in Russian).
Review
For citations:
Burakova E.A., Besperstova G.S., Neverova M.A., Tkachev A.G., Chapaksov N.A., Rukhov A.V. The influence of heat treatment on the properties of the catalyst for the synthesis of carbon nanotubes. Proceedings of the Voronezh State University of Engineering Technologies. 2020;82(1):237-246. (In Russ.) https://doi.org/10.20914/2310-1202-2020-1-237-246