Improving the massecuite crystallization in sugar production
https://doi.org/10.20914/2310-1202-2021-1-86-93
Abstract
The article discusses the concepts of continuous vacuum apparatus operation: vertical VKT (VKT – Verdampfungs-Kristallisations-Turm) and horizontal cascade of VKH vacuum apparatus (VKH —horizontal vacuum pan) from BMA (Germany). The advantages and features of the vertical continuous vacuum apparatus VKT are shown, as well as the possibilities for increasing the efficiency of the product department of sugar factories. Thanks to the special design of the crystallization chambers, the low massecuite level above the heating chamber and the use of mechanical stirrers in each chamber, the VKT apparatus can operate without difficulty with a very small temperature difference between heating steam and massecuite, as well as with an absolute heating steam pressure well below 1 bar. With optimal use of VKT vacuum apparatus, a variety of energy-saving schemes can be implemented, for example, double-effect evaporation in the crystallization section. Part of the secondary crystallization steam is used to heat one of the VKT units, which saves the heating steam of the evaporator unit used for this purpose. With an increase in the productivity of the sugar factory, it is possible to quickly equip the VKT apparatus with an additional chamber. The device works continuously throughout the season, especially with products with massecuite purity of more than 94%. The chambers are cleaned without stopping the entire apparatus. The boiling of massecuite of all stages of crystallization in VKT devices ensures a uniform operating mode of the food compartment, allows to achieve an increase in sugar yield and helps to reduce steam consumption at the plant.
About the Authors
N. G. KulnevaRussian Federation
Dr. Sci. (Engin.), professor, fermentation and sugar production technology department, Revolution Av., 19, Voronezh, 394036, Russia
V. A. Fedoruk
Cand. Sci. (Engin.), associate professor, LLC "BMA Russland", Komissarzhevskaya St., 10, Voronezh, 394036, Russia
N. A. Matvienko
Cand. Sci. (Engin.), associate professor, fermentation and sugar production technology department, Revolution Av., 19 Voronezh, 394036, Russia
E. M. Ponomareva
student, ,, Revolution Av., 19 Voronezh, 394036, Russia
References
1. Петров С.М., Подгорнова Н.М., Тужилкин В.И., Филатов С.Л. Преимущества непрерывного уваривания утфеля // Сахар. 2017. № 4. С. 30–37.
2. Шаруда И.В. Вакуум-аппарат непрерывного действия: история развития // Сахар. 2014. № 1. С. 48–55.
3. Moor B.S.C., Rosettenstein S., du Plessis N. Key considerations for high-performance continuous vacuum pans // International Sugar Journal. 2020.
4. Broadfoot R., Rackemann D., Moller D. Why the emerging strong interest in vertical continuous pans? // Proceedings of the 40th Australian Society of Sugar Cane Technologists Conference. Australian Society of Sugar Cane Technologists, 2018. P. 512-525.
5. Fernandes E.S., Alves C., Pagnocca F.C., Contiero J. et al. Sugar and ethanol production process from sugarcane // Sugarcane: Production Systems, Uses and Economic Importance. 2017. P. 193-216.
6. Mukesh K., Amit S. Evaporating cooling system: a review // International Journal for Research in Applied Science and Engineering Technology. 2018. V. 6. № 6. P. 1178-1187. doi: 10.22214/ijraset.2018.6172
7. Vejerano E.P., Marr L.C. Physico-chemical characteristics of evaporating respiratory fluid droplets // Journal of The Royal Society Interface. 2018. V. 15. №. 139. P. 20170939. doi: 10.1098/rsif.2017.0939
8. Qazi M.J., Liefferink R.W., Schlegel S.J., Backus E.H. et al. Influence of surfactants on sodium chloride crystallization in confinement // Langmuir. 2017. V. 33. №. 17. P. 4260-4268. doi: 10.1021/acs.langmuir.7b00244
9. Wang Q., Zhang W., Zhang Z., Liu S. et al. Crystallization Control of Ternary?Cation Perovskite Absorber in Triple?Mesoscopic Layer for Efficient Solar Cells // Advanced Energy Materials. 2020. V. 10. №. 5. P. 1903092. doi: 10.1002/aenm.201903092
10. Gregson F.K.A., Robinson J.F., Miles R.E.H., Royall C.P. et al. Drying kinetics of salt solution droplets: Water evaporation rates and crystallization // The Journal of Physical Chemistry B. 2018. V. 123. №. 1. P. 266-276. doi: 10.1021/acs.jpcb.8b09584
11. Fang C., Boe K., Angelidaki I. Anaerobic co-digestion of by-products from sugar production with cow manure // Water research. 2011. V. 45. №. 11. P. 3473-3480. doi: 10.1016/j.watres.2011.04.008
12. Anderson N.G. Using continuous processes to increase production // Organic Process Research & Development. 2012. V. 16. №. 5. P. 852-869. doi: 10.1021/op200347k
13. Eggleston G., C?t? G., Santee C. New insights on the hard-to-boil massecuite phenomenon in raw sugar manufacture // Food Chemistry. 2011. V. 126. №. 1. P. 21-30. doi: 10.1016/j.foodchem.2010.10.038
14. Pogoriliy T. The distribution of temperatures in the sucrose solution–sugar crystal–sucrose solution–massecuite cells depending on the boiling sugar massecuite time // Ukrainian Journal of Food Science. 2015. V. 3. №. 1. P. 139-148.
15. Rozsa L. On-line monitoring and control of supersaturation and other massecuite parameters in vacuum pans: A control engineering approach // International sugar Journal. 2011. V. 113. №. 1356. P. 853.
16. Pogoriliyy T. Temperatures distribution in the larger sugar crystal–larger crystal sucrose solution–less crystal sugar sucrose solution–smaller sugar crystal–massecuite cells system depending on the boiling sugar massecuite time //Ukrainian food journal. 2015. №. 4. P. 648-661.
17. Khan H.R., Ramzan Z. An experience with four (04) massecuite boiling system // Pakistan Sugar Journal. 2020. V. 35. №. 3.
18. Gonzales P.E.M., de Souza Peloso M.A., Olivo J.E., Andrade C.M.G. Fed-Batch Sucrose Crystallization Model for the B Massecuite Vacuum Pan, Solution by Deterministic and Heuristic Methods // Processes. 2020. V. 8. №. 9. P. 1145. doi: 10.3390/pr8091145
19. Sadjadi F.S., Honarvar M., Kalbasi-Ashtari A., Motaghian P. Bleaching effects of massecuite on some properties of crystallized sugar beet and milk chocolate bars produced // Journal of food science and technology. 2018. V. 55. №. 4. P. 1224-1233. doi: 10.1007/s13197-017-3007-8
20. Umo A.M., Alabi S.B. Predictive Model for Post-Seeding Super-Saturation of Sugar Massecuite in a Fed-Batch Evaporative Crystalliser // International Journal of Food Engineering. 2016. V. 2. №. 2. P. 119-123.
Review
For citations:
Kulneva N.G., Fedoruk V.A., Matvienko N.A., Ponomareva E.M. Improving the massecuite crystallization in sugar production. Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(1):86-93. (In Russ.) https://doi.org/10.20914/2310-1202-2021-1-86-93