Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

Mechanochemical production of a food supplement containing vitamin D and chelated forms of silicon

https://doi.org/10.20914/2310-1202-2021-4-190-196

Abstract

Systemic deficiency of vitamin D and silicon compounds in the human body leads to numerous negative consequences, primarily in the field of the functioning of the musculoskeletal system: even in the absence of a lack of calcium and phosphorus compounds, which are considered to be the main bone-forming substances, bone mineralization substances, the likelihood of falls and fractures increases, muscle pain occurs. Based on the known mechanisms of the physiological action of vitamin D and silicon on the human body, it was assumed in this work that a food supplement containing cholecalciferol and water-soluble chelated forms of silicon will have a synergistic effect. It was shown that using solid-phase mechanochemical treatment in the optimal mode, a product containing water-soluble chelated silicon compounds with an equilibrium concentration of up to 24 mg / l is obtained from rice husks and green tea. The optimal mode, characterized by high resistance to instabilities of the technological process, obtaining a product containing chelated silicon compounds from rice husk and green tea, is the rotor speed of the RM-50 semi-industrial centrifugal roller mill-activator equal to 1200 rpm at a feed rate of processing area equal to 43 kg / h. The resulting prototype was used as a solid matrix - the basis for applying cholecalciferol and obtaining a biologically active food supplement. The calculated amounts of the supplement required for consumption to replenish the body's daily need for vitamin D have shown the advisability of using soluble gelatin capsules.

About the Authors

A. L. Bychkov
Institute of Solid State Chemistry and Mechano-chemistry SB RAS
Russian Federation

Dr. Sci. (Chem.), laboratory of mechano-chemistry, 18 Kutateladze Str., Novosibirsk, 630090, Russian Federation



P. A. Reshetnikova
Novosibirsk State Technical University

master student, technology and organization of food production department, 20 Karl Marks Ave., Novosibirsk, 630073, Russian Federation; reshetnikovapolina@ngs.ru



E. G. Trofimova
Institute of Solid State Chemistry and Mechano-chemistry SB RAS

Cand. Sci. (Chem.), laboratory of mechanochemistry, 18 Kutateladze Str., Novosibirsk, 630090, Russian Federation



E. S. Bychkova
Novosibirsk State Technical University

Cand. Sci. (Engin.), technology and organization of food production department, 20 Karl Marks Ave., Novosibirsk, 630073, Russian Federation



O. I. Lomovsky
Institute of Solid State Chemistry and Mechano-chemistry SB RAS

Dr. Sci. (Chem.), laboratory of mechano-chemistry, 18 Kutateladze Str., Novosibirsk, 630090, Russian Federation;



References

1. Amrein K., Scherkl M., Hoffmann M. et al. Vitamin D deficiency 2.0: an update on the current status worldwide. European Journal of Clinical Nutrition. 2020. vol. 74. pp. 1498–1513. doi: 10.1038/s41430–020–0558 y

2. Caballero-Garc?a A., C?rdova-Mart?nez A., Vicente-Salar N. et al. Vitamin D, its role in recovery after muscular damage following exercise. Nutrients. 2021. vol. 13. no. 2336. doi: 10.3390/nu13072336

3. Buruiana A., Nedeltcheva-Petrova E., Nicoleta D., Olaru M. et al. Vitamin D and extraskeletal effects. Romanian Journal of Medical Practice. 2017. vol. 12. pp. 33–37. doi: 10.37897/RJMP.2017.1.6

4. Ling Y., Xu F., Xia X., Dai D. et al. Vitamin D supplementation reduces the risk of fall in the vitamin D deficient elderly: An updated systematic review and meta-analysis. Clinical Nutrition. 2021. vol. 40. pp. 5531–5537. doi: 10.1016/j.clnu.2021.09.031

5. Sim M., Zhu K., Lewis J., Hodgson J. et al. Association between vitamin D status and long?term falls?related hospitalization risk in older women. Journal of the American Geriatrics Society. 2021. vol. 69. pp. 3114–3123. doi:10.1111/jgs.17442

6. Reffitt D.M., Ogston N., Jugdaohsingh R. et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003. vol. 32. pp. 127–135. doi: 10.1016/s8756–3282(02)00950 x

7. Hott M., de Pollak C., Modrowski D., Marie P.J. Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcified Tissue International. 1993. vol. 53. pp. 174–179. doi: 10.1007/BF01321834

8. Giganti M., Tresoldi I., Masuelli L., Modesti A. et al. Fracture healing: From basic science to role of nutrition. Frontiers in bioscience (Landmark edition). 2014. vol. 19. pp. 1162–1175. doi: 10.2741/4273x

9. Chappell H., Jugdaohsingh R., Powell J. Physiological silicon incorporation into bone mineral requires orthosilicic acid metabolism to SiO44-. Journal of the Royal Society Interface. 2020. vol. 17. doi: 10.1098/rsif.2020.0145

10. Sahin K., Onderci M., Sahin N. et al. Dietary arginine silicate inositol complex improves bone mineralization in quail. Poultry Science. 2006. vol. 85. pp. 486–492. doi: 10.1093/ps/85.3.486.

11. Kim M.H., Bae Y.J., Choi M.K., Chung Y.S. Silicon supplementation improves the bone mineral density of calcium-deficient ovariectomized rats by reducing bone resorption. Biological Trace Element Research. 2009. vol. 128. pp. 239–247. doi:10.1007/s12011–008–8273 x.

12. Quintanar-Guerrero D., Ganem-Quintanar A., Nava-Arzaluz M.G., Pi??n-Segundo E. Silica xerogels as pharmaceutical drug carrie. Expert Opinion on Drug Delivery. 2009. vol. 5. pp. 485–498. doi: 10.1517/17425240902902307

13. Seleem M.N., Munusamy P., Ranjan A., Alqublan H. et al. Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens. Antimicrobial Agents and Chemotherapy. 2009. vol. 10. pp. 4270. doi: 10.1128/AAC.00815–09

14. Lu J., Liong M., Li Z., Zink J. et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010. vol. 6. pp. 1794–1805. doi: 10.1002/smll.201000538

15. Jugdaohsingh R. Silicon and bone health. The Journal of Nutrition, Health and Aging. 2007. vol. 11. pp. 99–110.

16. Rondanelli M., Faliva M., Peroni G., Gasparri C. et al. Silicon: a neglected micronutrient essential for bone health. Experimental Biology and Medicine. 2021. vol. 246. pp. 1500–1511. doi: 10.1177/1535370221997072

17. Goodman B.A. Utilization of waste straw and husks from rice production: a review. Journal of Bioresources and Bioproducts. 2020. vol. 5. pp. 143–162. doi: 10.1016/j.jobab.2020.07.001

18. Shapolova E., Lomovsky O. Mechanochemical solubilization of silicon dioxide with polyphenol compounds of plant origin. Russian Journal of Bioorganic Chemistry. 2013. vol. 39. pp. 765–770. doi: 10.1134/S1068162012070175

19. Nameyrra Z., Md Nesran Z. Shafie N. Farah S., et al. Iron chelation properties of green tea epigallocatechin 3 gallate (EGCG) in colorectal cancer cells: analysis on Tfr/Fth regulations and molecular docking. Evidence-based Complementary and Alternative Medicine. 2020. vol. 2020. no. 7958041. doi:10.1155/2020/7958041

20. Wang H., Wang C., Zou Y., Hu J. et al. Natural polyphenols in drug delivery systems: current status and future challenges. Giant. 2020. vol. 3. no. 100022. doi: 10.1016/j.giant.2020.100022

21. Ushiroyama T., Ikeda A., Ueki M. Effect of continuous combined therapy with vitamin K2 and vitamin D3 on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas. 2002. vol. 41. pp. 211–221. doi: 10.1016/s0378–5122(01)00275–4

22. Effaty F., Ottenwaelder X., Friscic T. Mechanochemistry in transition metal catalyzed reactions. Current Opinion in Green and Sustainable Chemistry. 2021. vol. 32. no. 100524. doi: 100524. 10.1016/j.cogsc.2021.100524

23. Thorpe J., O'Reilly D., Friscic T., Damha M.J. Frontispiece: mechanochemical synthesis of short DNA fragments. Chemistry. 2020. vol. 26. doi: 10.1002/chem.202084163

24. Chen Y., Mellot G., Luijk D., Creton C. et al. Mechanochemical tools for polymer materials. Chemical Society Reviews. 2021. vol. 50. pp. 4100–4140. doi: 10.1039/D0CS00940G

25. Bychkov A., Podgorbunskikh E., Bychkova E., Lomovsky O. Current achievements in the mechanically pretreated conversion of plant biomass. Biotechnology and Bioengineering. 2019. vol. 116. pp. 1231–1244. doi: 10.1002/bit.26925

26. Bychkov A.L., Buchtoyarov V.A., Lomovsky O.I. Mechanical pretreatment of corn straw in a centrifugal roller mill. Cellulose Chemistry and Technology. 2014. vol. 48. pp. 545–551.

27. Babat N., T?rkmen Y. Determination of serum vitamin D3 level by high performance liquid chromatography (HPLC) in patients with coronary artery actasia. Cardiology and Cardiovascular Medicine. 2020. vol. 4. pp. 097–104. doi: 10.26502/fccm.92920107

28. Clinical guidelines “Vitamin D deficiency in adults”. Moscow, Ministry of Health of the Russian Federation, 2016. (in Russian).

29. Haimi M., Kremer R. Vitamin D deficiency/insufficiency from childhood to adulthood: Insights from a sunny country. Occupational and Environmental Medicine. 2017. vol. 75. no. A35. doi: 10.1136/oemed 2018 ISEEabstracts.86

30. Shrivastava B., Aryan R., Tiwari A., Tiwari L. et al Comparative study of rise of vitamin D in hypovitaminosis D babies after two different dosage recommendations. International Journal of Contemporary Pediatrics. 2019. vol. 6. pp. 230–232. doi: 10.18203/2349–3291.ijcp20185218


Review

For citations:


Bychkov A.L., Reshetnikova P.A., Trofimova E.G., Bychkova E.S., Lomovsky O.I. Mechanochemical production of a food supplement containing vitamin D and chelated forms of silicon. Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(4):190-196. (In Russ.) https://doi.org/10.20914/2310-1202-2021-4-190-196

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)