Preview

Вестник Воронежского государственного университета инженерных технологий

Расширенный поиск

Обзор текущих тенденций и трудностей применения антимикробных соединений в композитной пищевой упаковке

https://doi.org/10.20914/2310-1202-2022-3-204-213

Аннотация

Пищевые отходы/порча, вызванные микробной клеткой, в последнее время стали одной из основных проблем продовольственной безопасности и экологии. Кроме того, порча продуктов питания вносит свой вклад в экономический кризис и проблемы со здоровьем. В связи с этим для сохранения безопасности продуктов питания и защиты их качества от посторонних загрязнений требуется активная система упаковки. Целью данного обзора было обобщить текущие решения и трудности применения антимикробных соединений в композитной пищевой упаковке. В частности, были раскрыты методы экструзии и нанесения антимикробных покрытий для включения антимикробных соединений в упаковочные системы и их оптимальные параметры обработки для распространенных полимерных композитов. Были представлены распространенные неорганические и органические антимикробные вещества/соединения с указанием их количества, добавляемого в упаковочную систему, и их антимикробной активности (снижение, частичная деактивация и полная деактивация). Подробно рассмотрены трудности при создании упаковки с антимикробными свойствами, касающиеся вопросов миграции антимикробных добавок из упаковки в пищевой продукт, накопления антимикробных добавок в пищевом продукте, а также температуры его обработки. Таким образом, данная обзорная работа способствует раскрытию всего объема научных знаний об антимикробных соединениях, используемых в полимерных композиционных материалах для применения в пищевой упаковке, и помогает выработать важные результаты для крупномасштабных операций

Об авторах

Эмиру Мелессе
Московский государственный университет пищевых производств
Россия

аспирант, кафедра промышленного дизайна, технологии упаковки и экспертизы, Волоколамское ш., 11, г. Москва, 125080, Россия



Ю. А. Филинская
Московский государственный университет пищевых производств

д.х.н., профессор, кафедра промышленного дизайна, технологии упаковки и экспертизы, Волоколамское ш., 11, г. Москва, 125080, Россия



Али Альхаир
Московский государственный университет пищевых производств

к.э.н., инженер, кафедра промышленного дизайна, технологии упаковки и экспертизы, Волоколамское ш., 11, г. Москва, 125080, Россия



О. А. Банникова
Московский государственный университет пищевых производств

к.т.н., кафедра промышленного дизайна, технологии упаковки и экспертизы, Волоколамское ш., 11, г. Москва, 125080, Россия



Маржан Эбердиева
Московский политехнический университет

аспирант, кафедра технологий и управления качеством в полиграфическом и упаковочном производстве, Большая Семеновская ул., 38, г. Москва, 107023, Россия



Список литературы

1. World Health Organization. WHO model list of essential medicines – 22nd list, 2021. Technical Document 2021.

2. Morris M.A., Padmanabhan S.C., Cruz-Romero M.C., Cummins E. et al. Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications. Meat Sci. 2017. vol. 132. pp. 163–78. doi: 10.1016/j.meatsci.2017.04.234

3. Saravanan A., Kumar P.S., Hemavathy R.V., Jeevanantham S. et al. Methods of detection of food-borne pathogens: a review. Environmental Chemistry Letters. 2021. vol. 19. no. 1. pp. 189-207. doi: 10.1007/s10311–020–01072z

4. Nile S. H. et al. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-micro letters. 2020. vol. 12. no. 1. pp. 1-34. doi: 10.1007/s40820–020–0383–9

5. Alabi O.A., Ologbonjaye K.I., Awosolu O., Alalade O.E. Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess. 2019. vol. 5. no. 021. pp. 1-13. doi: 10.23937/2572–4061.1510021

6. Hong L.G., Yuhana N.Y., Zawawi E.Z.E. Review of bioplastics as food packaging materials. AIMS Mater Sci. 2021. vol. 8. pp. 166–184. doi: 10.3934/matersci.2021012

7. Gutiérrez T.J. Polymers for food applications: News. Polymers for food applications. Springer, Cham, 2018. pp. 1-4. doi: 10.1007/978–3–319–94625–2

8. Grönman K., Soukka R., Järvi-Kääriäinen T., Katajajuuri J.M. et al. Framework for sustainable food packaging design. Packaging Technology and Science. 2013. vol. 26. doi: 10.1002/pts.1971

9. Jariyasakoolroj P., Leelaphiwat P., Harnkarnsujarit N. Advances in research and development of bioplastic for food packaging. Journal of the Science of Food and Agriculture. 2020. vol. 100. no. 14. pp. 5032-5045. doi: 10.1002/jsfa.9497.

10. Debeaufort F. Active biopackaging produced from by‐products and waste from food and marine industries. FEBS Open bio. 2021. vol. 11. no. 4. pp. 984-998. doi: 10.1002/2211–5463.13121

11. Arfat Y.A., Ejaz M., Jacob H., Ahmed J. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers. 2017. vol. 157. pp. 65-71. doi: 10.1016/j.carbpol.2016.09.069.

12. Siripatrawan U, Kaewklin P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll. 2018. vol. 84. doi: 10.1016/j.foodhyd.2018.04.049.

13. Nouri A., Yaraki M.T., Ghorbanpour M., Agarwal S. et al. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. International Journal of Biological Macromolecules. 2018. vol. 109. pp. 1219-1231. doi: 10.1016/j.ijbiomac.2017.11.119.

14. Salmas C., Giannakas A., Katapodis P., Leontiou A. et al. Development of ZnO/Na-montmorillonite hybrid nanostructures used for PVOH/ZnO/Na-montmorillonite active packaging films preparation via a melt-extrusion process. Nanomaterials. 2020. vol. 10. no. 6. pp. 1079. https://doi.org/10.3390/nano10061079

15. Xing Y., Xu Q., Li X., Chen C. et al. Chitosan-based coating with antimicrobial agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polym Sci. 2016. vol. 2016. doi: 10.1155/2016/4851730.

16. Yu H.H., Kim Y.J., Park Y.J., Shin D.M. et al. Application of mixed natural preservatives to improve the quality of vacuum skin packaged beef during refrigerated storage. Meat Sci. 2020. vol. 169. doi: 10.1016/j.meatsci.2020.108219

17. Huang T., Qian Y., Wei J., Zhou C. Polymeric Antimicrobial food packaging and its applications. Polymers (Basel). 2019. vol. 11. doi: 10.3390/polym11030560

18. Liang S., Wang L. A natural antibacterial-antioxidant film from soy protein isolate incorporated with cortex Phellodendron extract. Polymers (Basel). 2018. vol. 10. doi: 10.3390/polym10010071

19. Nguyen T.T., Dao U.T.T., Bui Q.P.T., Bach G.L.et al. Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Progress in Organic Coatings. 2020. vol. 140. pp. 105487. doi: 10.1016/j.porgcoat.2019.105487

20. Gingasu D., Mindru I., Patron L., Ianculescu A. et al. Synthesis and characterization of chitosan-coated cobalt ferrite nanoparticles and their antimicrobial activity. Journal of Inorganic and Organometallic Polymers and Materials. 2018. vol. 28. no. 5. pp. 1932-1941. doi: 10.1007/s10904–018–0870–3

21. Sofi S.A., Singh J., Rafiq S., Ashraf U. et al. A comprehensive review on antimicrobial packaging and its use in food packaging. Current Nutrition & Food Science. 2018. vol. 14. no. 4. pp. 305-312. doi: 10.2174/1573401313666170609095732

22. Mirabelli V., Majidi Salehi S., Angiolillo L., Belviso B.D. et al. Enzyme crystals and hydrogel composite membranes as new active food packaging material. Global Challenges. 2018. vol. 2. no. 1. pp. 1700089. doi: 10.1002/gch2.201700089.

23. Galante Y.M., Merlini L., Silvetti T., Campia P. et al. Enzyme oxidation of plant galactomannans yielding biomaterials with novel properties and applications, including as delivery systems. Applied microbiology and biotechnology. 2018. vol. 102. no. 11. pp. 4687-4702. doi: 10.1007/s00253–018–9028z

24. Avramescu S.M., Butean C., Popa C.V., Ortan A. et al. Edible and functionalized films/coatings-performances and perspectives. Coatings. 2020. vol. 10. doi: 10.3390/coatings10070687

25. Saadat S., Pandey G., Tharmavaram M., Braganza V. et al. Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites. Adv Colloid Interface Sci. 2020. vol. 275. doi: 10.1016/j.cis.2019.102063.

26. Arsenie L.V., Lacatusu I., Oprea O., Bordei N. et al. Azelaic acid-willow bark extract-panthenol–Loaded lipid nanocarriers improve the hydration effect and antioxidant action of cosmetic formulations. Industrial Crops and Products. 2020. vol. 154. pp. 112658. doi: 10.1016/j.indcrop.2020.112658.

27. Realini C.E., Marcos B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014. vol. 98. doi: 10.1016/j.meatsci.2014.06.031

28. Feng K., Wen P., Yang H., Li N. et al. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC advances. 2017. vol. 7. no. 3. pp. 1572-1580. doi: 10.1039/c6ra25977d.

29. He S., Yang Q., Ren X., Zi J. et al. Antimicrobial efficiency of chitosan solutions and coatings incorporated with clove oil and/or ethylenediaminetetraacetate. Journal of Food Safety. 2014. vol. 34. no. 4. pp. 345-352. doi: 10.1111/jfs.12134

30. Mulla M., Ahmed J., Al-Attar H., Castro-Aguirre E. et al. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control. 2017. vol. 73. pp. 663-671. doi: 10.1016/j.foodcont.2016.09.018

31. Radulescu M., Popescu S., Ficai D., Sonmez M. et al. Advances in Drug Delivery Systems, from 0 to 3D superstructures. Curr Drug Targets. 2016. vol. 19. doi: 10.2174/1389450117666160401122926

32. Lopes F.A., de Fátima Ferreira Soares N., de Cássia Pires Lopes C., da Silva W.A. et al. Conservation of bakery products through cinnamaldehyde antimicrobial films. Packaging Technology and Science. 2014. vol. 27. doi: 10.1002/pts.2033.

33. Mihaly-Cozmuta A., Peter A., Craciun G., Falup A. et al. Preparation and characterization of active cellulose-based papers modified with TiO2, Ag and zeolite nanocomposites for bread packaging application. Cellulose. 2017. vol. 24. doi: 10.1007/s10570–017–1383x

34. Al-Naamani L., Dutta J., Dobretsov S. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials. 2018. vol. 8. doi: 10.3390/nano8070479

35. Xing Y., Li X., Guo X., Li W. et al. Effects of different tio2 nanoparticles concentrations on the physical and antibacterial activities of chitosan-based coating film. Nanomaterials. 2020. vol. 10. doi: 10.3390/nano10071365

36. Xing Y., Li W., Wang Q., Li X. et al. Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules. 2019. vol. 24. doi: 10.3390/molecules24091695

37. Sun L., Yang S., Qian X., An X. High-efficacy and long-term antibacterial cellulose material: anchored guanidine polymer via double “click chemistry.” Cellulose. 2020. vol. 27. doi: 10.1007/s10570–020–03374–5

38. Jouneghani R.S., Castro A.H.F., Panda S.K., Swennen R. et al. Antimicrobial activity of selected banana cultivars against important human pathogens, including candida biofilm. Foods. 2020. vol. 9. doi: 10.3390/foods9040435.

39. Chaudhry Q., Scotter M., Blackburn J., Ross B. et al. Food Additives and Contaminants Applications and implications of nanotechnologies for the food sector. Taylor & Francis. 2008. vol. 25.

40. Silvestre C., Duraccio D., Cimmino S. Food packaging based on polymer nanomaterials. Progress in polymer science. 2011. vol. 36. no. 12. pp. 1766-1782. doi: 10.1016/j.progpolymsci.2011.02.003.

41. Salleh E., Muhamad I.I. Starch‐based Antimicrobial Films Incorporated with Lauric Acid and Chitosan. AIP Conference Proceedings. American Institute of Physics, 2010. vol. 1217. no. 1. pp. 432-436. doi: 10.1063/1.3377861

42. Joerger R.D., Sabesan S., Visioli D., Urian D. et al. Antimicrobial activity of chitosan attached to ethylene copolymer films. Packaging Technology and Science. 2009. vol. 22. doi: 10.1002/pts.822

43. Jin T., Gurtler J.B. Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. J Appl Microbiol. 2011. vol. 110. doi: 10.1111/j. 1365–2672.2011.04938.x

44. Jin T. Inactivation of Listeria monocytogenes in Skim Milk and Liquid Egg White by Antimicrobial Bottle Coating with Polylactic Acid and Nisin. J Food Sci. 2010. vol. 75. doi: 10.1111/j. 1750–3841.2009.01480.x

45. Makwana S., Choudhary R., Kohli P. Advances in Antimicrobial Food Packaging with Nanotechnology and Natural Antimicrobials. International Journal of Food Science and Nutrition Engineering. 2015. vol. 2015. pp. 169–175. doi: 10.5923/j.food.20150504.02

46. Nielsen P. V., Rios R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. International journal of food microbiology. 2000. vol. 60. no. 2-3. pp. 219-229. doi: 10.1016/S0168–1605(00)00343–3

47. Dahham S.S., Ali M.N., Tabassum H., Khan M. Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am. Eurasian J. Agric. Environ. Sci. 2010. vol. 9. no. 3. pp. 273-281.

48. Nirmala J.G., Narendhirakannan R.T. In vitro antioxidant and antimicrobial activities of grapes (Vitis vinifera L) seed and skin extracts–Muscat variety. Int J Pharm Pharm Sci. 2011. vol. 3. no. 4. pp. 242-249.

49. Céspedes C.L., Avila J.G., Martínez A., Serrato B. et al. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem. 2006. vol. 54. doi: 10.1021/jf053071w

50. Markín D., Duek L., Berdícevsky I. In vitro antimicrobial activity of olive leaves. Mycoses. 2003. vol. 46. doi: 10.1046/j. 1439–0507.2003.00859.x

51. Rai M., Ingle A.P., Gupta I., Pandit R. et al. Smart nano packaging for the enhancement of food shelf lifE. Environ Chem Lett. 2019. vol. 17. doi: 10.1007/s10311–018–0794–8

52. Vilas C., Mauricio-Iglesias M., García M. R. Model-based design of smart active packaging systems with antimicrobial activity. Food Packaging and Shelf Life. 2020. vol. 24. pp. 100446. doi: 10.1016/j.fpsl.2019.100446

53. Szabo K., Teleky B.E., Mitrea L., Călinoiu L.F. et al. Active packaging-poly (vinyl alcohol) films enriched with tomato by-products extract. Coatings. 2020. vol. 10. doi: 10.3390/coatings10020141

54. Motelica L., Ficai D., Oprea O.C., Ficai A. et al. Smart food packaging designed by nanotechnological and drug delivery approaches. Coatings. 2020. vol. 10. doi: 10.3390/COATINGS10090806.

55. Shruthy R., Jancy S., Preetha R. Cellulose nanoparticles synthesized from potato peel for the development of active packaging film for enhancement of shelf life of raw prawns (Penaeus monodon) during frozen storage. Int J Food Sci Technol. 2021. vol. 56. doi: 10.1111/ijfs.14551

56. Ramos M., Beltran A., Fortunati E., Peltzer M.A. et al. Controlled release of thymol from poly (Lactic acid) – based silver nanocomposite films with antibacterial and antioxidant activity. Antioxidants. 2020. vol. 9. doi: 10.3390/antiox9050395.

57. Settier-Ramírez L., López-Carballo G., Gavara R., Hernández-Muñoz P. PVOH/protein blend films embedded with lactic acid bacteria and their antilisterial activity in pasteurized milk. Int J Food Microbiol. 2020. vol. 322. doi: 10.1016/j.ijfoodmicro.2020.108545.

58. Surendhiran D., Li C., Cui H., Lin L. Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag Shelf Life. 2020. vol. 23. doi: 10.1016/j.fpsl.2019.100439.

59. Pan Y., Xia Q., Xiao H. Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: An overview. Polymers (Basel). 2019. vol. 11. doi: 10.3390/polym11081283

60. Yildirim S., Röcker B., Pettersen M.K., Nilsen-Nygaard J. et al. Active Packaging Applications for Food. Compr Rev Food Sci Food Saf. 2018. vol. 17. doi: 10.1111/1541–4337.12322

61. Zhang Z., Wang X., Gao M., Zhao Y. et al. Sustained release of an essential oil by a hybrid cellulose nanofiber foam system. Cellulose. 2020. vol. 27. doi: 10.1007/s10570–019–02957–1

62. Vermeiren L., Devlieghere F., Debevere J. Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam. 2002. vol. 19. doi: 10.1080/02652030110104852

63. Brockgreitens J., Abbas A. Responsive Food Packaging: Recent Progress and Technological Prospects. Compr Rev Food Sci Food Saf. 2016. vol. 15. doi: 10.1111/1541–4337.12174

64. Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A. et al. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009. vol. 33. doi: 10.1016/j.ijantimicag.2008.12.004

65. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008. vol. 4. doi: 10.1016/j.actbio.2007.11.006

66. Wang R.H., Xin J.H., Tao X.M. UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics. Inorg Chem. 2005. vol. 44. doi: 10.1021/ic0503176

67. Kim B., Kim D., Cho D., Cho S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere. 2003. vol. 52. doi: 10.1016/S0045–6535(03)00051–1

68. Gamage G.R., Park H.J., Kim K.M. Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Research International. 2009. vol. 42. doi: 10.1016/j.foodres.2009.03.012

69. Kanmani P., Rhim J.W. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym. 2014. vol. 106. doi: 10.1016/j.carbpol.2014.02.007

70. Wang X.I.I., Song X.J., Zhang D.J., Li Z.J. et al. Preparation and characterization of natamycin-incorporated agar film and its application on preservation of strawberries. Food Packag Shelf Life. 2022. vol. 32. pp. 100863. doi: 10.1016/j.fpsl.2022.100863.

71. Iijima M., Kamiya H. Layer-by-layer surface modification of functional nanoparticles for dispersion in organic solvents. Langmuir. 2010. vol. 26. doi: 10.1021/la1030747

72. Gómez-Estaca J., López-de-Dicastillo C., Hernández-Muñoz P., Catalá R. et al. Advances in antioxidant active food packaging. Trends Food Sci Technol. 2014. vol. 35. doi: 10.1016/j.tifs.2013.10.008

73. Ha J.U., Kim Y.M., Lee D.S. Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packaging Technology and Science. 2001. vol. 14. doi: 10.1002/pts.537.

74. Solano A.C.V., de Gante C.R. Two Different Processes to Obtain Antimicrobial Packaging Containing Natural Oils. Food Bioproc Tech. 2012. vol. 5. doi: 10.1007/s11947–011–0626–3

75. Torlak E., Nizamlioǧlu M. Antimicrobial effectiveness of chitosan-essential oil coated plastic films against foodborne pathogens. Journal of Plastic Film and Sheeting. 2011. voi. 27. doi: 10.1177/8756087911407391

76. Muriel-Galet V., Cerisuelo J.P., López-Carballo G., Aucejo S. et al. Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control. 2013. vol. 30. Doi: 10.1016/j.foodcont.2012.06.032.

77. Ye M., Neetoo H., Chen H. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol. 2008. vol. 25. doi: 10.1016/j.fm.2007.10.014

78. Ferrari M.C., Carranza S., Bonnecaze R.T., Tung K.K. et al. Modeling of oxygen scavenging for improved barrier behavior: Blend films. J Memb Sci. 2009. vol. 329. doi: 10.1016/j.memsci.2008.12.030

79. Tan C., Han F., Zhang S., Li P. et al. Molecular Sciences Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. Int J Mol Sci. 2021. vol. 22. pp. 9663. doi: 10.3390/ijms.

80. Anitha S., Brabu B., Thiruvadigal D.J., Gopalakrishnan C. et al. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydrate polymers. 2012. vol. 87. no. 2. pp. 1065-1072. doi: 10.1016/j.carbpol.2012.12.020.

81. Gharoy Ahangar E., Abbaspour-Fard M.H., Shahtahmassebi N., Khojastehpour M. et al. Preparation and Characterization of PVA/ZnO NanocompositE. J Food Process Preserv. 2015. vol. 39. doi: 10.1111/jfpp.12363.

82. Paisoonsin S., Pornsunthorntawee O., Rujiravanit R. Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Appl Surf Sci. 2013. vol. 273. doi: 10.1016/j.apsusc.2013.03.026

83. Li X., Feng, X.Q., Yang S., Fu G.Q. et al. Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydrate Polymers. 2010. vol. 79. no. 3. pp. 493-499. doi: 10.1016/j.carbpol.2009.07.011

84. Shi L.E. Li Z.H., Zheng W., Zhao Y.F. et al. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Additives & Contaminants: Part A. 2014. vol. 31. no. 2. pp. 173-186. doi: 10.1080/19440049.2013.865147.

85. Bassani A., Montes S., Jubete E., Palenzuela J. et al. Incorporation of waste orange peels extracts into PLA films. Chem Eng Trans. 2019. vol. 74. doi: 10.3303/CET1974178

86. Moyssiadi T., Badeka A., Kondyli E., Vakirtzi T. et al. Effect of light transmittance and oxygen permeability of various packaging materials on keeping quality of low-fat pasteurized milk: Chemical and sensorial aspects. Int Dairy J. 2004. vol. 14. doi: 10.1016/j.idairyj.2003.09.001

87. Han G., Guo R., Yu Z., Chen G. Progress on biodegradable films for antibacterial food packaging. E3S Web of Conferences. 2020. vol. 145. doi: 10.1051/e3sconf/202014501036

88. Byun Y., Kim Y.T., Whiteside S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J Food Eng. 2010. vol. 100. doi: 10.1016/j.jfoodeng.2010.04.005

89. Sobhan A., Muthukumarappan K., Wei L. Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. Food Package Shelf Life. 2021. vol. 30. doi: 10.1016/j.fpsl.2021.100745

90. Motelica L., Ficai D., Ficai A., Oprea O.C. et al. Biodegradable antimicrobial food packaging: Trends and perspectives. Foods. 2020. vol. 9. doi: 10.3390/foods9101438

91. Youssef A.M., El-Sayed S.M. Bio nanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr Polym. 2018. vol. 193. doi: 10.1016/j.carbpol.2018.03.088

92. Sanuja S., Agalya A., Umapathy M.J. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int J Biol Macromol. 2015. vol. 74. doi: 10.1016/j.ijbiomac.2014.11.036

93. .


Рецензия

Для цитирования:


Мелессе Э., Филинская Ю.А., Альхаир А., Банникова О.А., Эбердиева М. Обзор текущих тенденций и трудностей применения антимикробных соединений в композитной пищевой упаковке. Вестник Воронежского государственного университета инженерных технологий. 2022;84(3):204-213. https://doi.org/10.20914/2310-1202-2022-3-204-213

For citation:


Melesse E., Filinskaya Y.A., Alkhair A., Bannikova O.A., Eyeberdiyeva M. Overall Review the Current Tend and Difficulties of Antimicrobial compounds in Composite Food Packaging Applications. Proceedings of the Voronezh State University of Engineering Technologies. 2022;84(3):204-213. https://doi.org/10.20914/2310-1202-2022-3-204-213

Просмотров: 396


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)