Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

Effect of dietary intake on the composition of the intestinal microbiota

https://doi.org/10.20914/2310-1202-2024-3-51-58

Abstract

The human gut microbiota is a complex ecosystem consisting of trillions of microorganisms that symbiotically inhabit the human gut. Through the production of a number of metabolites, they perform many important metabolic functions that complement mammalian enzyme activity and play an essential role in digestion. Interindividual variability in the structure of the microbiota and hence the expression of its genes (microbiome) has been largely explained by diet. Nutrition affects the composition and function of the microbiota with short- and long-term effects. Although an extensive number of studies are available, the molecular mechanisms underlying these effects still remain incompletely understood. In this article, we summarized and concretized the available data on the effects of diet on the composition of the gut microbiota. Nutrition has short- and long-term effects on microbial colonies, accomplishing a profound impact on human health. In fact, diet-induced changes in the microbiota are progressively associated not only with human physiology but also with chronic diseases, including obesity, immune, metabolic and inflammatory bowel diseases. The relationship between human health, gut microbiota and nutrition represents one of the most promising and challenging topics for researchers. Indeed, the microbiota is a dynamic community undergoing changes according to dietary habits throughout the human lifespan and has a great metabolic potential to act on pharmacological targets and bioactive compounds.

About the Authors

T. S. Kovaleva
Voronezh State University of Engineering Technologies

Cand. Sci. (Engin.), senior lecturer, technologies of fermentation and sugar production department, Revolution Av., 19 Voronezh, 394036, Russia



O. N. Kryukova
Voronezh State University of Engineering Technologies

Cand. Sci. (Ped.), physical education and sport department, Revolution Av., 19 Voronezh, 394036, Russia



A. V. Ezhova
Voronezh State Academy of Sports

Cand. Sci. (Ped.), associate professor, theory and methodology of sports games department, st. Karla Marksa, 59, Voronezh, Russia



S. F. Yakovleva
Voronezh State University of Engineering Technologies

Cand. Sci. (Engin.), associate professor, biochemistry and biotechnology department, Revolution Av., 19 Voronezh, 394036, Russia



References

1. Sommer F., Bäckhed F. The gut microbiota – masters of host development and physiology. Nat. Rev. Genet. 2013. vol. 11. pp. 227–238.

2. Hollister E.B., Gao C., Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterol. 2014. vol. 146. pp. 1449–1458.

3. Thursby E., Juge N. Introduction to the human gut microbiota. Biochem. J. 2017. vol. 474. pp. 1823–1836.

4. Qin J., Li R., Raes J., Arumugam M. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010. vol. 464. pp. 59–65.

5. Huttenhower C., Gevers D., Knight R. et al. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012. vol. 486. pp. 207–214.

6. Ursell L.K., Metcalf J.L., Parfrey L.W., Knight R. Defining the human microbiome. Nutr. Rev. 2012. vol. 70. pp. S38S44.

7. Heintz-Buschart A., Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018. vol. 26. pp. 563–574.

8. Andersson A.F., Lindberg M., Jakobsson H., Bäckhed F. et al. Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLOS ONE. 2008. no. 3. pp. е2836.

9. Schloss P.D., Westcott S.L., Ryabin T., Hall J.R. et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009. vol. 75. pp. 7537–7541.

10. Hartman A.L., Riddle S., McPhillips T., Ludäscher B. et al. Introducing W.A.T.E.R.S.: АWоrkflоw for the Alignment, Taxonomy, and Ecology of Ribosomal Sequences. BMC Bioinform. 2010. vol. 11. pp. 317.

11. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010. vol. 7. pp. 335–336.

12. Ley R.E., Lozupone C.A., Hamady M., Knight R. et al. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Genet. 2008. vol. 6. pp. 776–788.

13. Rinninella E., Raoul P., Cintoni M., Franceschi F. et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019. vol. 7. no. 14.

14. Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010. vol. 90. pp. 859–904.

15. Ehrlich S.D. The МеtаНIТ Consortium МеtаНIТ: The European Union Project on Metagenomics of the Human Intestinal Tract. Metagenomics Hum. Body. 2010. vol. 15. pp. 307–316.

16. Le Chatelier E., Nielsen T., Qin J., Prifti E. et al. Richness of human gut microbiota correlates with metabolic markers. Nature. 2013. vol. 500. pp. 541–546.

17. Lozupone C.A., Jesse I., Stombaugh J.I., Gordon J.I. et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012. vol. 489. pp. 220–230.

18. Osadchiy V., Martin C.R., Mayer E.A. The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. 2019. vol. 17. pp. 322–332.

19. Flint H.J., Duncan S.H., Scott K.P., Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2014. vol. 74. pp. 13–22.

20. Gentile C.L., Weir T.L. The gut microbiota at the intersection of diet and human health. Science. 2018. vol. 362. pp. 776–780.

21. Leeming E., Johnson A.J., Spector T.D., Le Roy C.I. et al. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients. 2019. vol. 11. pp. 2862.

22. Zmora N., Suez J., Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2018. vol. 16. pp. 35–56.

23. Kolodziejczyk A.A., Zheng D., Elinav E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Genet. 2019. vol. 17. pp. 742–753.

24. Charbonneau M.R., O’Donnell D., Blanton L.V., Totten S.M. et al. Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. Cell. 2016. vol. 164. pp. 859–871.

25. Milani C., Duranti S., Bottacini F., Casey E. et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017. vol. 81. pp. е00036е00117.

26. Derrien M., Alvarez A.–S., De Vos W.M. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019. vol. 27. pp. 997–1010.

27. Claesson M.J., Jeffery I.B., Conde S., Power S.E. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012. vol. 488. pp. 178–184.

28. García-Peña C., Álvarez-Cisneros T., Quiroz-Baez R., Friedland R.P. Microbiota and Aging. A Review and Commentary. Arch. Med Res. 2017. vol. 48. pp. 681–689.

29. Casati M., Ferri E., Azzolino D., Cesari M., Arosio B. Gut microbiota and physical frailty through the mediation of sarcopenia. Exp. Gerontol. 2019. vol. 124. pp. 110639.

30. A Segre J. Microbial growth dynamics and human disease. Science 2015, 349, 1058–1059.

31. David L., Materna A.C., Friedman J., Campos-Baptista M.I. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014. vol. 15. pp. R89.

32. David L.A., Maurice C.F., Carmody R.N., Gootenberg D. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013. vol. 505. pp. 559–563.

33. Zarrinpar A., Chaix A., Yooseph S., Panda S. Diet and feeding pattern a_ect the diurnal dynamics of the gut microbiome. Cell Metab. 2014. vol. 20. pp. 1006–1017.

34. Thaiss, C.A.; Zeevi, D.; Levy, M.; Segal, E.; Elinav, E. A day in the life of the meta-organism: Diurnal rhythms of the intestinal microbiome and its host. Gut Microbes. 2015. vol. 6. pp. 137–142.

35. Liang X., Fitzgerald G.A. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J. Biol. Rhythm. 2017. vol. 32. pp. 505–515.

36. Kaczmarek J.L., Musaad S.M., Holscher H. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am. J. Clin. Nutr. 2017.vol. 106. no. 5. pp. 1220-1231.

37. Kaczmarek J.L., Thompson S.V., Holscher H. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 2017. vol. 75. pp. 673–682.

38. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences. 2010. vol. 107. pp. 14691–14696.

39. Gupta V.K., Paul S., Dutta C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017. vol. 8. pp. 1162.

40. Zuo T., Kamm M.A., Colombel J.–F., Ng S.C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2018. vol. 15. pp. 440–452.

41. Fragiadakis G.K., Smits S.A., Sonnenburg E.D., Van Treuren W. et al. Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes. 2018. vol. 10. pp. 216–227.

42. Markowiak P., Slizewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017. vol. 9. pp. 1021.

43. Wilson K., Situ C. Systematic Review on Effects of Diet on Gut Microbiota in Relation to Metabolic Syndromes. J. Clin. Nutr. Metab. 2017. vol. 1. no. 2.

44. Hold G., Schwiertz A., Aminov R., Blaut M. et al. Oligonucleotide Probes That Detect Quantitatively Significant Groups of Butyrate-Producing Bacteria in Human Feces. Appl. Environ. Microbiol. 2003. vol. 69. pp. 4320–4324.

45. Luthold R.V., Fernandes G.D.R., De Moraes A., Folchetti L.G. et al. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017. vol. 69. pp. 76–86.

46. Costantini L., Molinari R., Farinon B., Merendino N. Impact of Omega3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017. vol. 18. pp. 2645.

47. Paoli A., Mancin L., Bianco A., Thomas E. Ketogenic Diet and Microbiota: Friends or Enemies? Genes. 2019. vol. 10. pp. 534.

48. De Filippis F., Pellegrini N., Vannini L., Jeffery I.B. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2015. vol. 65. pp. 1812–1821.

49. Tomova A., Bukovsky I., Rembert E., Yonas W. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019. vol. 6. pp. 47.

50. Vetrani C., Costabile G., Luongo D., Naviglio D. et al. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrients. 2016. vol. 32. 217–221.

51. Kovatcheva-Datchary P., Nilsson A.C., Akrami R., Lee Y.S. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015. vol. 22. pp. 971–982.

52. Jefferson A., Adolphus K. The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front. Nutr. 2019. vol. 6. no. 33.

53. Si X., Shang W., Zhou Z., Shui G. et al. Gamma-aminobutyric Acid Enriched Rice Bran Diet Attenuates Insulin Resistance and Balances Energy Expenditure via Modification of Gut Microbiota and Short-Chain Fatty Acids. J. Agric. Food Chem. 2018. vol. 66. pp. 881–890.

54. Rinninella E., Cintoni M., Raoul P., Lopetuso L.R. et al. Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients. 2019. vol. 11. pp. 2393.

55. Chassaing B., Koren O., Goodrich J.K., Poole A. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015. vol. 519. pp. 92–96.

56. Laudisi F., Stolfi C., Monteleone G. Impact of Food Additives on Gut Homeostasis. Nutrients. 2019. vol. 11. pp. 2334.


Review

For citations:


Kovaleva T.S., Kryukova O.N., Ezhova A.V., Yakovleva S.F. Effect of dietary intake on the composition of the intestinal microbiota. Proceedings of the Voronezh State University of Engineering Technologies. 2024;86(3):51-58. (In Russ.) https://doi.org/10.20914/2310-1202-2024-3-51-58

Views: 205


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)