Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

Effect of Zirconium oxide (ZrО2) Nanoparticles on the Mechanical, WVTR, and Antibacterial Properties of Polyethylene Polymer Matrix

https://doi.org/10.20914/2310-1202-2025-1-272-279

Abstract

A nanocomposite based on a low-density polyethylene (LDPE) matrix reinforced with zirconium dioxide (ZrO₂) nanoparticles was synthesized via single-screw extrusion and systematically characterized. Structural analysis confirmed homogeneous dispersion of ZrO₂ nanoparticles at lower concentrations (4.7% w/w), while agglomeration occurred at higher loadings (8.7% w/w), as evidenced by digital microscopy. FTIR spectroscopy revealed Zr-O vibrational modes at 421-468 cm⁻¹, verifying successful incorporation. Mechanical properties exhibited concentration-dependent behavior: tensile strength decreased by 31% (12.30→8.5 MPa) and elongation by 34% (482→320%) with 8.7% ZrO₂, attributed to stress concentration at nanoparticle clusters. Conversely, film thickness increased linearly (R²=0.98) with filler content, reducing water vapor transmission rate by 42% through enhanced tortuosity. The nanocomposites demonstrated remarkable antimicrobial efficacy, achieving 3-log reduction against E. coli at 8.7% loading, surpassing conventional food packaging materials. Thermal analysis (DSC/TGA) revealed improved thermal stability (↑15°C in decomposition temperature) without compromising LDPE's melt processability. These findings position ZrO₂-LDPE nanocomposites as advanced materials for active packaging, combining tailored mechanical performance, superior moisture barriers, and non-migratory antimicrobial protection while maintaining compliance with food-contact regulations. 

About the Authors

Emiru Yidnekachew Melesse
Federal State Budgetary Educational Institution of Higher Education Russian Biotechnological University
Russian Federation

Department of Industrial Design Packaging Technologies and Expertise



Ali Yakoub Alkhair
Federal State Budgetary Educational Institution of Higher Education Russian Biotechnology University
Russian Federation

Department of Industrial Design Packaging Technologies and Expertise



Y. A. Filinskaya
Federal State Budgetary Educational Institution of Higher Education Russian Biotechnology University
Russian Federation

Department of Industrial Design Packaging Technologies and Expertise



I. A. Kirsh
Federal State Budgetary Educational Institution of Higher Education Russian Biotechnology University
Russian Federation

Department of Industrial Design Packaging Technologies and Expertise



O. A. Bannikova
Federal State Budgetary Educational Institution of Higher Education Russian Biotechnology University
Russian Federation

Department of Industrial Design Packaging Technologies and Expertise



References

1. 1 Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A. Polymer composite materials: A comprehensive review. Composite Structures. 2021. vol. 262. p. 113640.

2. 2 Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K. Application of nanotechnology in food packaging: Pros and Cons. J Agric Food Res. 2022. vol. 7. p.100270.

3. 3 de Sousa MS, Schlogl AE, Estanislau FR, Souza VGL, dos Reis Coimbra JS, Santos IJB. Nanotechnology in Packaging for Food Industry: Past, Present, and Future. Coatings. 2023 vol. 13. p. 1411.

4. 4 Dash K.K., Deka P., Bangar S.P., Chaudhary V., Trif M., Rusu A. Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers. 2022. vol. 14. no. 3. pp. 521.

5. 5 Paidari S., Ibrahim S.A. Potential application of gold nanoparticles in food packaging: a mini review. Gold Bulletin. 2021. vol. 54. pp. 31-36.

6. 6 Mesgari M., Aalami A.H., Sahebkar A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. International Journal of Biological Macromolecules. 2021. vol. 176. pp. 530-539.

7. 7 Rossa V., Monteiro Ferreira L.E., da Costa Vasconcelos S., Tai Shimabukuro E.T., Gomes da Costa Madriaga V., Carvalho A.P. et al. Nanocomposites based on the graphene family for food packaging: historical perspective, preparation methods, and properties. RSC Advances. 2022. vol. 12. no. 22. pp. 14084-14111.

8. 8 Zhang W., Roy S., Rhim J.W. Copper-based nanoparticles for biopolymer-based functional films in food packaging applications. Comprehensive Reviews in Food Science and Food Safety. 2023. vol. 22. no. 3. pp. 1933-1952.

9. 9 Naveen Z., Eswara Rao B., Mallika E.N., Sreenivasa Rao T., Narendra Nath D., Prasad T.N.V.K.V. Evaluating the NanoZinc Oxide Composite Polymer Films Developed for Packaging Chicken Meat against pH Variations During Refrigerated Storage. Indian Veterinary Journal. 2022. vol. 99. no. 7. pp. 75-79.

10. 10 Brito S.C., Bresolin J.D., Sivieri K., Ferreira M.D. Low-density polyethylene films incorporated with silver nanoparticles to promote antimicrobial efficiency in food packaging. Food Science and Technology International. 2020. vol. 26. no. 4. pp. 353-366.

11. 11 Mohseni E., Ranjbar M.M., Yazdi M.A., Hosseiny S.S., Roshandel E. The effects of silicon dioxide, iron(III) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash. Magazine of Concrete Research. 2015. vol. 67. no. 20. pp. 1112-1124.

12. 12 Singh Jassal P., Kaur D., Prasad R., Singh J. Green synthesis of titanium dioxide nanoparticles: Development and applications. Journal of Agricultural and Food Research. 2022. vol. 10. p. 100361.

13. 13 Khan M.R., Fromm K.M., Rizvi T.F., Giese B., Ahamad F., Turner R.J. et al. Metal Nanoparticle-Microbe Interactions: Synthesis and Antimicrobial Effects. Particle and Particle Systems Characterization. 2020. vol. 37. p. 1900419.

14. 14 Chitoria A.K., Mir A., Shah M.A. A review of ZrO2 nanoparticles applications and recent advancements. Ceramics International. 2023. vol. 49. no. 20. pp. 32343-32358.

15. 15 Nabiyev A.A., Olejniczak A., Islamov A.K., Pawlukojc A., Ivankov O.I., Balasoiu M. et al. Composite films of HDPE with SiO2 and ZrO2 nanoparticles: The structure and interfacial effects. Nanomaterials. 2021. vol. 11. no. 10. p. 2673.

16. 16 Nuriyev MA, Gasimova AI, Nabiyev AA, Shukurova AA, Nuruyev IM. Influence of gamma irradiation on the electrophysical properties of PVA/СdS polymer nanocomposites. Radiation Physics and Chemistry. 2023. vol. 212. no. 5–6. p. 111160.

17. 17 Reyes-Acosta M.A., Torres-Huerta A.M., Domínguez-Crespo M.A., Flores-Vela A.I., Dorantes-Rosales H.J., Ramírez-Meneses E. Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. Journal of Alloys and Compounds. 2015. vol. 643. no. S1. pp. S150-S158.

18. 18 Wang P., Ma Q., Li B., Li Y. Microstructure and Thermal-protective Property of CPED Coating with ZrO2 Nanoparticles Addition on Al 12Si Alloy. Journal Wuhan University of Technology, Materials Science Edition. 2019. vol. 34. no. 5. pp. 1187-1192.

19. 19 Fouad H., Elleithy R., Alothman O.Y. Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications: Effect of Accelerated Ageing. Journal of Materials Science and Technology. 2013. vol. 29. no. 6. pp. 573-581.

20. 20 Kango S., Kalia S., Celli A., Njuguna J., Habibi Y., Kumar R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites - A review. Progress in Polymer Science. 2013. vol. 38. no. 8. pp. 1232-1261.

21. 21 Jafarnejad G., Rabbani M. Fabrication of ZrO2/ceramic nanocomposite for water purification. Materials Research Express. 2020. vol. 10. no. 4. p. 6437.

22. 22 Matias M.L., Carlos E., Branquinho R., do Valle H., Marcelino J., Morais M. et al. A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applications. Energies. 2022. vol. 15. no. 17. p.6452.

23. 23 Kumari S., Debbarma R., Nasrin N., Khan T., Taj S., Bhuyan T. Recent advances in packaging materials for food products. Food Bioengineering. 2024. vol. 3. no. 2. pp. 236-249.

24. 24 Yan C., Yan J., Zhang Z., Yu D., Wang S., Jiang X. et al. Screw extrusion process used in the polymer modified asphalt field: A review. Journal of Cleaner Production. 2024. vol. 448. pp. 69-80.

25. 25 Lewandowski A., Wilczyński K. Modeling of Twin Screw Extrusion of Polymeric Materials. Polymers. 2022. vol. 14. no. 2. p. 274.

26. 26 Gaspar-Cunha A., Monaco F., Sikora J., Delbem A. Artificial intelligence in single screw polymer extrusion: Learning from computational data. Engineering Applications of Artificial Intelligence. 2022. vol. 116. p. 105397.

27. 27 Abeykoon C. Single screw extrusion control: A comprehensive review and directions for improvements. Control Engineering Practice. 2016. vol. 51. no. 3. pp. 69-80.

28. 28 Chawengkijwanich C., Hayata Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology. 2008. vol. 123. no. 3. pp. 288-292.

29. 29 Szlachetka O., Witkowska-Dobrev J., Baryła A., Dohojda M. Low-density polyethylene (LDPE) building films - Tensile properties and surface morphology. Journal of Building Engineering. 2021. vol. 44. no. 10. 103386.

30. 30 Hanemann T., Szabó D.V. Polymer-nanoparticle composites: From synthesis to modern applications. Materials. 2010. vol. 3. no. 6. pp. 3468-3517.

31. 31 Šupová M., Martynková G.S., Barabaszová K. Effect of nanofillers dispersion in polymer matrices: A review. Science of Advanced Materials. 2011. vol. 3. no. 1. pp. 1-25.

32. 32 Osorio-Arciniega R., García-Hipólito M., Alvarez-Fregoso O., Alvarez-Perez M.A. Composite fiber spun mat synthesis and in vitro biocompatibility for guide tissue engineering. Molecules. 2021. vol. 26. no. 24. 7597.

33. 33 Correa M.G., Martínez F.B., Vidal C.P., Streitt C., Escrig J., de Dicastillo C.L. Antimicrobial metal-based nanoparticles: A review on their synthesis, types and antimicrobial action. Beilstein Journal of Nanotechnology. 2020. vol. 11. pp. 1450-1469.

34. 34 Arora A., Lashani E., Turner R.J. Bacterial synthesis of metal nanoparticles as antimicrobials. Microbial Biotechnology. 2024. vol. 17. e14549.

35. 35 Yang H., Liu C., Yang D., Zhang H., Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. Journal of Applied Toxicology. 2009. vol. 29. no. 1. pp. 69-78.

36. 36 Ivask A., Titma T., Visnapuu M., Vija H., Kakinen A., Sihtmae M. et al. Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro. Current Topics in Medicinal Chemistry. 2015. vol. 15. no. 18. pp. 1914-1929.

37. 37 Thamir A.A., Jubier N.J., Odah J.F. Antimicrobial Activity of Zirconium Oxide Nanoparticles Prepared by the Sol-Gel Method. Journal of Physics: Conference Series. 2021. vol. 2114. p.1742.

38.


Review

For citations:


Melesse E.Y., Alkhair A.Ya., Filinskaya Y.A., Kirsh I.A., Bannikova O.A. Effect of Zirconium oxide (ZrО2) Nanoparticles on the Mechanical, WVTR, and Antibacterial Properties of Polyethylene Polymer Matrix. Proceedings of the Voronezh State University of Engineering Technologies. 2025;87(1):272-279. https://doi.org/10.20914/2310-1202-2025-1-272-279

Views: 81


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)