Effect of Bacillus subtilis probiotic bacteria on behavioral characteristics of mice and serum biochemical parameters during induced systemic inflammation
https://doi.org/10.20914/2310-1202-2025-2-
Abstract
This study aimed to comprehensively evaluate the influence of the probiotic strain Bacillus subtilis on behavioral responses and serum biochemical parameters in mice under conditions of lipopolysaccharide (LPS)-induced systemic inflammation. The experimental model using C57BL/6 mice demonstrated the probiotic's pronounced modulating effect on key behavioral aspects. The administration of B. subtilis significantly reduced the frequency of grooming acts, which is interpreted as a reduction in anxiety and a manifestation of an anxiolytic effect. Simultaneously, an increase in exploratory activity was observed, manifested by a rise in the number of hole pokes and vertical rearings in the Open Field test, indicating a potential positive impact on cognitive functions. In contrast, LPS-induced inflammation caused suppression of exploratory activity and a decrease in defecation, reflecting a negative impact on intestinal peristalsis and the general stress state of the animals. Biochemical analysis revealed a duality of B. subtilis effects: alongside behavioral improvement, a statistically significant increase in serum urea levels was recorded, which may be indirectly related to microbiome restructuring and metabolic shifts. Concurrently, a decrease in cholesterol concentration was detected in the LPS group, likely due to macrophage activation and disruption of its synthesis. The obtained data emphasize the complex nature of the interaction between the probiotic and host physiology, indicating the need for further study of the mechanisms of B. subtilis influence on the gut-brain axis and metabolism under inflammatory conditions to develop effective strategies for correcting LPS-induced disorders.
About the Authors
S. V. Pogorelovajr. scientist, laboratory of metagenomics and food biotechnology, Revolution Av., 19 Voronezh, 394036, Russia
E. A. Chirkin
student, technician, laboratory of metagenomics and food biotechnology, Revolution Av., 19 Voronezh, 394036, Russia
P. D. Morozova
postgraduate student, junior researcher, laboratory of metagenomics and food biotechnology, Revolution Av., 19 Voronezh, 394036, Russia
M. Y. Syromyatnikov
Cand. Sci. (Biolog.), leading researcher, laboratory of metagenomics and food biotechnology, Revolution Av., 19 Voronezh, 394036, Russia
O. V. Zvereva
junior researcher, laboratory of metagenomics and food biotechnology, Revolution Av., 19 Voronezh, 394036, Russia
A. A. Tolkacheva
junior researcher, laboratory of metagenomics and food biotechnology, Revolution Av., 19 Voronezh, 394036, Russia
References
1. Żółkiewicz J., Marzec A., Ruszczyński M., Feleszko W. Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients. 2020. vol. 12. no. 8. p. 2189. doi:10.3390/nu12082189
2. Vicente-Gil S., Nuñez-Ortiz N., Morel E., Serra C.R., Docando F., Díaz-Rosales P., Tafalla C. Immunomodulatory properties of Bacillus subtilis extracellular vesicles on rainbow trout intestinal cells and splenic leukocytes. Frontiers in Immunology. 2024. vol. 15. p. 1394501. doi:10.3389/fimmu.2024.1394501
3. Zhang J., Zhang R., Wang J., Abbas Z., Tong Y., Fang Y., Zhou Y., Zhang H., Li Z., Si D. et al. Efficient Production Strategy of a Novel Postbiotic Produced by Bacillus subtilis and Its Antioxidant and Anti-Inflammatory Effects. Molecules. 2025. vol. 30. p. 2089. doi:10.3390/molecules30102089
4. Domínguez-Oliva A., Hernández-Ávalos I., Martínez-Burnes J., Olmos-Hernández A., Verduzco-Mendoza A., Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals. 2023. vol. 13. no. 7. p. 1223. doi:10.3390/ani13071223
5. Ren Y., Zhang Y., Li X., Gao D., Sun Y., Ping W., Ge J. Bacteriocin production and inhibition of Bacillus subtilis by Lactobacillus paracasei HD1.7 in an indirect coculture system. Preparative Biochemistry and Biotechnology. 2022. vol. 52. no. 7. pp. 783–788. doi:10.1080/10826068.2021.1995412
6. Geng J., Shi Y., Zhang J., Yang B., Wang P., Yuan W., Zhao H., Li J., Qin F., Hong L., Xie C., Deng X., Sun Y., Wu C., Chen L., Zhou D. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nature Communications. 2021. vol. 12. p. 3519. doi:10.1038/s41467-021-23683-y
7. Lajqi T., Braun M., Kranig S.A., Frommhold D., Pöschl J., Hudalla H. LPS Induces Opposing Memory-like Inflammatory Responses in Mouse Bone Marrow Neutrophils. International Journal of Molecular Sciences. 2021. vol. 22. no. 18. p. 9803. doi:10.3390/ijms22189803
8. Gryaznova M., Burakova I., Smirnova Y., Morozova P., Chirkin E., Gureev A., Mikhaylov E., Korneeva O., Syromyatnikov M. Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation. Microorganisms. 2024. vol. 12. no. 7. p. 1341. doi:10.3390/microorganisms12071341
9. Ennaceur A. Tests of unconditioned anxiety – pitfalls and disappointments. Physiology & Behavior. 2014. vol. 135. pp. 55–71. doi: 10.1016/j.physbeh.2014.05.032
10. Yang J., Ning H.C., Zhang Q., Yue J.Q., Cao X.V., Li J.Y., Liu L., Zhao H.P., Zhao H.X. Effects of Bacillus subtilis BS-Z15 on Intestinal Microbiota Structure and Body Weight Gain in Mice. Probiotics and Antimicrobial Proteins. 2023. vol. 15. no. 3. pp. 706–715. doi:10.1007/s12602-021-09897-y
11. Seibenhener M.L., Wooten M.C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments. 2015. no. 96. p. e52434. doi:10.3791/52434
12. Yakovleva O.V. (Arkhipova), Mullakaeva A.I., Salikhzyanova A.F. et al. Effect of Microbiota Metabolite Butyric Acid on Motor Coordination, Muscle Strength and Oxidative Stress Level in Skeletal Muscles of Mice with Dysbiosis. Russian Physiological Journal Named After I.M. Sechenov. 2023. vol. 109. no. 6. pp. 723–736. (in Russian)
13. Kalueff A.V., Stewart A.M., Song C. et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nature Reviews Neuroscience. 2016. vol. 17. no. 1. pp. 45–59. doi:10.1038/nrn.2015.8
14. Cheng H.W., Jiang S., Hu J. The Gut-Brain Axis: Probiotic Bacillus subtilis Prevents Aggression via Modulation of Serotonergic System. Gut Microbiota. 2019. doi:10.5772/intechopen.86775
15. Dang E.V., McDonald J.G., Russell D.W., Cyster J.G. Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation. Cell. 2017. vol. 171. no. 5. pp. 1057–1071. doi: 10.1016/j.cell.2017.09.029
16. Aljumaa M.R., Alhulaifi M.M., Abudabos A.M. et al. Bacillus subtilis PB6-Based Probiotic (CloSTAT) Improves Recovery Following Necrotic Enteritis Challenge. PLOS ONE. 2020. vol. 15. no. 6. p. e0232781. doi: 10.1371/journal.pone.0232781
17. Wright J., Morland P., Wipat A. et al. Engineered ureolytic Bacillus subtilis and its potential in microbial-induced calcium carbonate precipitation. Access Microbiology. 2020. vol. 2. doi: 10.1099/acmi.ac2020.po0143
18. Salminen S., Collado M.C., Endo A. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology. 2021. vol. 18. no. 9. pp. 649–667. doi:10.1038/s41575-021-00440-6
19. Nataraj B.H., Ali S.A., Behare P.V., Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories. 2020. vol. 19. no. 1. p. 168. doi: 10.1186/s12934-020-01426-w
20. Teame T., Wang A., Xie M. et al. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Frontiers in Nutrition. 2020. vol. 7. p. 570344. doi: 10.3389/fnut.2020.570344
21.
Review
For citations:
Pogorelova S.V., Chirkin E.A., Morozova P.D., Syromyatnikov M.Y., Zvereva O.V., Tolkacheva A.A. Effect of Bacillus subtilis probiotic bacteria on behavioral characteristics of mice and serum biochemical parameters during induced systemic inflammation. Proceedings of the Voronezh State University of Engineering Technologies. 2025;87(2):71-76. (In Russ.) https://doi.org/10.20914/2310-1202-2025-2-