Optimizing quinoa seed drying modes in a drum dryer with a channel nozzle
https://doi.org/10.20914/2310-1202-2025-2-
Abstract
The article presents the results of experimental studies of primary technological processes for processing quinoa seeds of domestic selection on a pilot drying unit. The purpose of the study is to identify rational values of the parameters of the post-harvest seed drying process in a continuous drum dryer. The object of the study was the process of convective drying of quinoa seeds of domestic selection of NPO "KVINOA CENTER", Novokubansk, Krasnodar Territory, variety Kadi, harvest of 2024. The experiment was carried out on a pilot unit of a drum dryer with channel nozzles for transverse feeding of the drying agent. The influence of the main process parameters (temperature and flow rate of the heat carrier, productivity for wet material) on the process was studied. Drying optimization was carried out based on the condition of minimizing specific energy consumption when reaching the moisture content of quinoa seeds up to 8.0–8.5% at the outlet of the dryer. The multicriterial optimization problem was solved using the three-factor design of the Box-Wilson experiment. The dispersion analysis was carried out using the ANOVA method. The response surface methodology was used to analyze and visualize the experimental data. Finding the region of optimal values was carried out using the Harrington desirability function. Rational intervals of input factor values were established from the analysis of the array of solutions: heat carrier temperature at the inlet to the drum 323-325 deg. K; heat carrier flow rate 0.312-0.316 m3/s; productivity for wet seeds 1583.8-1586.12 kg/h. The use of these modes of moisture removal from quinoa seeds ensures the minimization of energy costs for the process drying at the required storage parameters.
About the Authors
S. V. Rodnishchevgraduate student, machines and equipment for food production department, Revolution Av., 19 Voronezh, 394036, Russia
D. V. Dmitriev
CEO, LLC "Scientific and Production Association Quinoa Center", Krasnodarskiy Territory, 352240, Russia
I. A. Bakin
Dr. Sci. (Engin.), professor, processes and apparatus for processing industries department, Timiryazevskaya st., 49 Moscow, 127434, Russia
S. V. Shakhov
Dr. Sci. (Engin.), professor, machines and equipment for food production department, Revolution Av., 19 Voronezh, 394036, Russia
I. A. Glotova
Dr. Sci. (Engin.), professor, technology of storage and processing of agricultural products department, Michurina st., 1 Voronezh, 394087, Russia
A. S. Muravyev
Cand. Sci. (Engin.), assistant professor, machines and equipment for food production department, Revolution Av., 19 Voronezh, 394036, Russia
References
1. Romano N., Ureta M.M., Guerrero-Sánchez M. et al. Nutritional and technological properties of a quinoa (Chenopodium quinoa Willd.) spray-dried powdered extract. Food Research International. 2020. vol. 129. p. 108884. doi: 10.1016/j.foodres.2019.108884
2. Kuktaite R., Repo-Carrasco-Valencia R., Mendoza C. et al. Innovatively processed quinoa (Chenopodium quinoa Willd.) food: chemistry, structure and end-use characteristics. Journal of the Science of Food and Agriculture. 2021. vol. 102. pp. 5065–5076. doi: 10.1002/jsfa.11214
3. Manjarres Hernández E.H., Morillo Coronado A.C., Cárdenas Chaparro A. et al. Yield, phenology and triterpene saponins in Colombian quinoa. Front. Sustain. Food Syst. 2022. vol. 6. p. 919885. doi: 10.3389/fsufs.2022.919885
4. Sultanova Z.S., Toderich K.N. Vozdelyvanie Kinoa v Usloviyah Yuzhnogo Priaral'ya. Science Review. 2019. no. 8(25). (in Russian). doi: 10.31435/rsglobal_sr/31102019/6749
5. Doklad o chelovecheskom razvitii v Rossijskoj Federacii za 2018 god. Ed. by Bobylev S.N., Grigoriev L.M. Moscow: Analiticheskiy tsentr pri Pravitel'stve Rossiyskoy Federatsii, 2018. 172 p. (in Russian)
6. Vorsheva A.V. Quinoa is a new promising cereal crop for Russia, nutritional value and history of cultivation: an overview. AgroEkoInfo. 2024. no. 1(61). (in Russian). doi: 10.51419/202141131
7. Alandia G., Rodríguez J.P., Jacobsen S.E. et al. Global expansion of quinoa and challenges for the Andean region. Glob. Food Sec. 2020. vol. 26. p. 100429. doi: 10.1016/j.gfs.2020.100429
8. Moscon E., Blum L.E., Spehar C. et al. Kinetics and quality of quinoa seeds after drying and during storage. Journal of Agricultural Science. 2020. vol. 12. no. 2. pp. 71–71. doi: 10.5539/jas.v12n2p71
9. Bakhtavar M.A., Afzal I. Climate smart Dry Chain Technology for safe storage of quinoa seeds. Sci Rep. 2020. vol. 10. p. 12554. doi: 10.1038/s41598-020-69190-w
10. Axunbaev A.A. Optimization of the shape of the nozzle of drum dryers. Universum: tekhnicheskie nauki. 2023. no. 6–1(111). pp. 21–26. (in Russian). doi: 10.32743/UniTech.2023.111.6.15705
11. Bakin I., Shahov S. et al. Optimization of drying and storage parameters for freeze-dried plant products. FES: Finance. Economy. Strategy. 2023. no. 20. pp. 49–58. (in Russian)
12. Tkach V.V., Shevtsov A.A. Virtual test bench for computer-aided design of drum dryers based on kinetic laws of the drying process. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2023. vol. 50. no. 1. pp. 152–160. (in Russian). doi: 10.21822/2073-6185-2023-50-1-152-160
13. Pat. 2367865 C1 Rossijskaya Federaciya, MPK F26B 11/04. Barabannaya sushilka s kanal'noj nasadkoj / Antipov S.T., Shahov S.V., Gavrilenkov A.M.; zayavitel' Voronezh. gos. tekhnol. akad. № 2008128107; zayavl. 09.07.2008; opubl. 20.09.2009. (in Russian)
14. Voronov S.S., Kuznetsov I.V., Gavrilenkov A.M. et al. Realizaciya oscilliruyushchih rezhimov sushki v barabannom sushil'nom aggregate. Sovremennye naukoemkie tekhnologii. 2014. no. 5–1. p. 161. (in Russian)
15. Jabir K., Palwasha G., Qingyun L., Kunlun L. Drying kinetics and thermodynamic analysis; enhancing quinoa (Chenopodium quinoa Willd.) quality profile via pre-treatments assisted germination and processing. Ultrasonics Sonochemistry. 2025. vol. 117. p. 107337. doi: 10.1016/j.ultsonch.2025.107337
16. Orlova T.V., Aider M. Starch Grain Quinoa (Chenopodium quinoa Willd.): Composition, Morphology and Physico-Chemical Properties. Food Processing: Techniques and Technology. 2021. vol. 51. no. 1. pp. 98–112. (in Russian). doi: 10.21603/2074-9414-2021-1-98-112
17. Boyko A.F., Voronkova N.M. Teoriya planirovaniya mnogofaktornyh eksperimentov. Belgorod: Belgorodskij gosudarstvennyj tekhnologicheskij universitet im. V.G. Shuhova, 2020. 75 p. (in Russian)
18. Subramani D., Tamilselvan S., Murugesan M. et al. Optimization of sand puffing characteristics of quinoa using response surface methodology. Curr Res Nutr Food Sci. 2020. vol. 8. no. 2. doi: 10.12944/CRNFSJ.8.2.16
19. Makarova D.Yu., Novikova E.K., Alexandrova L.Yu. Response surface methodology in the quantitative determination of polysaccharides in the roots of the polygonatum officinale. Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii. 2023. vol. 22. no. 4. pp. 208–213. (in Russian). doi: 10.37903/vsgma.2023.4.28
20. Carvalho A.M.X.De, Souza M.R.De, Marques T.B. et al. Familywise type I error of ANOVA and ANOVA on ranks in factorial experiments. Ciencia Rural. 2023. vol. 53. no. 7. doi: 10.1590/0103-8478cr20220146
21. Tabatabaei M., Hartikainen M., Miettinen K. et al. ANOVA-MOP: ANOVA decomposition for multiobjective optimization. SIAM Journal on Optimization. 2018. vol. 28. no. 4. pp. 3260–3289. doi: 10.1137/16M1096505
22. Korshunov A.O., Lavrenteva E.A., Lazarev M.A. et al. Optimization of tall oil pitch saponification by experimental design. Izvestiya vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2022. no. 1(385). pp. 173–187. doi: 10.37482/0536-1036-2022-1-173-187
23. Zakhakhatnov V.G., Popov V.M., Afonkina V.A. The Harrington desirability function as a criterion for the optimal choice of a grain dryer. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2022. no. 2(94). pp. 110–114. (in Russian). doi: 10.37670/2073-0853-2022-94-2-110-114
24.
Review
For citations:
Rodnishchev S.V., Dmitriev D.V., Bakin I.A., Shakhov S.V., Glotova I.A., Muravyev A.S. Optimizing quinoa seed drying modes in a drum dryer with a channel nozzle. Proceedings of the Voronezh State University of Engineering Technologies. 2025;87(2):101-111. (In Russ.) https://doi.org/10.20914/2310-1202-2025-2-




























