Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

Evidence for the Efficacy of a Sustained-Release Inhaled Isoniazid Formulation via Pharmacokinetic/Pharmacodynamic Modeling

https://doi.org/10.20914/2310-1202-2025-3-

Abstract

Optimization of tuberculosis therapy remains one of the urgent tasks of modern medicine. Pulmonary delivery of antibiotics can improve the effectiveness of tuberculosis treatment, as it ensures high local drug concentrations in the lungs and reduces the risk of systemic side effects. The aim of the study was to substantiate the effectiveness of an inhaled anti-tuberculosis formulation with sustained release of isoniazid using pharmacokinetic and pharmacodynamic modeling. To describe pharmacokinetics, multi-compartment pharmacokinetic models were constructed for oral and pulmonary delivery of isoniazid. Model parameters for oral delivery were determined based on published clinical trial data. The absorption rate for the pulmonary formulation was determined from experimental data on isoniazid permeability through a membrane in an in vitro system. The pharmacodynamic model considered the growth and death of the extracellular population of Mycobacterium tuberculosis depending on drug concentration. Combined pharmacokinetic–pharmacodynamic modeling showed that pulmonary delivery of the drug provides higher local exposure in the epithelial lining fluid at lower plasma concentrations and contributes to more effective suppression of the bacterial population than oral delivery. For a dose of 300 mg over two days, early bactericidal activity (EBA) was: EBA = 0,568 log₁₀ CFU/mL/day (oral delivery); EBA = 0,677 log₁₀ CFU/mL/day (pulmonary delivery, respirable fraction (RF) = 0,6); EBA = 0,688 log₁₀ CFU/mL/day (pulmonary delivery, RF = 1). Total drug exposure in epithelial lining fluid (AUC) over 48 hours was: AUC = 15,31 mg·h/L (oral delivery); AUC = 29,06 mg·h/L (pulmonary delivery, RF = 0,6); AUC = 48,44 mg·h/L (pulmonary delivery, RF = 1). Calculation of extracellular bacterial population dynamics under pulmonary delivery of isoniazid (15 – 450 mg) showed that a daily dose of 50 – 100 mg (RF = 0,6) achieves early bactericidal activity values close to the maximum. Mathematical modeling confirms the advantages of the pulmonary route and serves as an effective tool for dose justification and the development of pulmonary drug formulations.

About the Authors

L. A. Shcherbakova
FSBEI HE D.I. Mendeleev University of Chemical Technology of Russia
Russian Federation

engineer, chemical and pharmaceutical engineering department, Miusskaya sq., 9 Moscow, 125047, Russia



E. A. Petrikova
FSBEI HE D.I. Mendeleev University of Chemical Technology of Russia

master, chemical and pharmaceutical engineering department, Miusskaya sq., 9 Moscow, 125047, Russia



R. R. Safarov
OOO TD “KHIMMED”

director of production development, OOO TD “KHIMMED”, Kashirskoe shosse, 3, bldg. 2, building 4/9, Moscow, 115230, Russia



M. G. Gordienko
FSBEI HE D.I. Mendeleev University of Chemical Technology of Russia

Dr. Sci. (Engin.), professor, chemical and pharmaceutical engineering department, Miusskaya sq., 9 Moscow, 125047, Russia



References

1. Lalande L., Bourguignon L., Maire P., Goutelle S. Mathematical modeling and systems pharmacology of tuberculosis: Isoniazid as a case study. J. Theor. Biol. 2016. vol. 399. pp. 43–52. doi: 10.1016/j.jtbi.2016.03.038.

2. World Health Organization. World health statistics 2025: monitoring health for the SDGs, Sustainable Development Goals. Geneva: WHO; 2025. Licence: CC BY-NC-SA 3.0 IGO. Available at: https://iris.who.int/bitstream/handle/10665/381418/9789240110496eng.pdf (Accessed June 29, 2025).

3. World Health Organization. Global Tuberculosis Report 2023. 1st ed. Geneva: WHO; 2023.

4. Mehta P., Bothiraja C., Kadam S., Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artif. Cells Nanomed. Biotechnol. 2018. vol. 46, suppl. 1. pp. S791S806. doi:10.1080/21691401.2018.1457531.

5. Borghardt J.M., Kloft C., Sharma A. Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018. vol. 2018. 2732017. doi:10.1155/2018/2732017.

6. Parumasivam T., Chang R., Abdelghany Sh., Ye T., Britton W., Chan H. Dry powder inhalable formulations for anti-tubercular therapy. Adv. Drug Deliv. Rev. 2016. vol. 102. pp. 83–101. doi:10.1016/j.addr.2016.04.015.

7. Fernandes G.F.D.S., Salgado H.R.N., Santos J.L.D. Isoniazid: a review of characteristics, properties and analytical methods. Crit. Rev. Anal. Chem. 2017. vol. 47, no. 4. pp. 298–308. doi:10.1080/10408347.2016.1264193.

8. Verma R.K., Kaur J., Kumar K., Yadav A.B., Misra A. Intracellular time course, pharmacokinetics, and biodistribution of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to mice. Antimicrob. Agents Chemother. 2008. vol. 52, no. 9. pp. 3195–3201. doi:10.1128/AAC.01562–07.

9. Mo P., Hatanaka Y., Furukawa S., Takase M., Yamanaka S., Doi M., Kämäräinen T., Uchiyama H., Kadota K., Tozuka Y. Cocrystal formulation design of 4aminosalicylic acid and isoniazid via spray-drying based on a ternary phase diagram toward simultaneous pulmonary delivery. Powder Technol. 2024. vol. 445. 120126. doi:10.1016/j.powtec.2023.120126.

10. Nainwal N., Sharma Y., Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis. 2022. vol. 135. 102228. doi: 10.1016/j.tube.2022.102228.

11. Reddy K., Naraharisetti L., Prasanna V. Excipient-free inhalable combination shell-core microparticles with clofazimine as shell for extended pulmonary retention of isoniazid in core. Int. J. Pharm. 2025. vol. 672. 125310. doi:10.1016/j.ijpharm.2025.125310.

12. Shao Z., Tam K., Achalla V., Woon E., Mason A., Chow S., Yam J. Synergistic combination of antimicrobial peptide and isoniazid as inhalable dry powder formulation against multi-drug resistant tuberculosis. Int. J. Pharm. 2024. vol. 654. 123960. doi: 10.1016/j.ijpharm.2023.123960.

13. Singh A., Verma R., Mukker J., Jadav A., Muttil P., Sharma R., Mohan M., Agrawal A. Inhalable particles containing isoniazid and rifabutin as adjunct therapy for safe, efficacious and relapse-free cure of experimental animal tuberculosis in one month. Tuberculosis. 2021. vol. 128. 102081. doi:10.1016/j.tube.2021.102081.

14. Muliaditan M., Teutonico D., Ortega-Muro F., Ferrer S., Della Pasqua O. Prediction of lung exposure to anti-tubercular drugs using plasma pharmacokinetic data: implications for dose selection. Eur. J. Pharm. Sci. 2022. vol. 173. 106163. doi: 10.1016/j.ejps.2022.106163.

15. Young D., Stark J., Kirschner D. Systems biology of persistent infection: tuberculosis as a case study. Nat. Rev. Microbiol. 2008. vol. 6. pp. 520–528. doi:10.1038/nrmicro1917.

16. Goutelle S., Bourguignon L., Maire P.H., Van Guilder M., Conte J.E., Jelliffe R.W. Population modeling and Monte Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in lungs. Antimicrob. Agents Chemother. 2009. vol. 53. pp. 2974–2981. doi:10.1128/AAC.01520–08.

17. Gumbo T, Angulo-Barturen I, Ferrer-Bazaga S. Pharmacokinetic-pharmacodynamic and dose-response relationships of antituberculosis drugs: recommendations and standards for industry and academia. J Infect Dis. 2015; 211 Suppl 3:S96S106. doi: 10.1093/infdis/jiu610.

18. Gumbo T., Angulo-Barturen I., Ferrer-Bazaga S. Pharmacokinetic-pharmacodynamic and dose-response relationships of antituberculosis drugs: recommendations and standards for industry and academia. J. Infect. Dis. 2015. vol. 211, suppl. 3. pp. S96S106. doi: 10.1093/infdis/jiu610.

19. Gumbo T., Louie A., Deziel M.R., Liu W., Parsons L.M., Salfinger M., Drusano G.L. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob. Agents Chemother. 2007. vol. 51. pp. 3781–3788. doi: 10.1128/AAC.01533–06.

20. Pasipanodya J., Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob. Agents Chemother. 2011. vol. 55. pp. 24–34. doi:10.1128/AAC.00510–10.

21. Lalande L., Bourguignon L., Bihari S., Maire P., Neely M., Jelliffe R., Goutelle S. Population modeling and simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of isoniazid in lungs. Antimicrob. Agents Chemother. 2015. vol. 59. pp. 5181–5189. doi:10.1128/AAC.00586–15

22. Shcherbakova L.A., Petrikova E.A., Gordienko M.G., Safarov R.R., Shchekotikhin A.E. A study of the influence of polymer matrix and process parameters of spray drying on the properties of powder inhalation composition. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta. 2024. vol. 30, no. 4. pp. 687–696. (in Russian).

23. Saitgareeva A.I., Abramov A.A., Shcherbakova L.A., Gordienko M.G. Development of a dosing dry powder inhaler. XX International Congress of Young Scientists in Chemistry and Chemical Technology. 2024. vol. 38, no. 9. pp. 74–76. (in Russian).

24. Shcherbakova L.A., Petrikova E.K., Gordienko M.G. Application of polycaprolactone and polylactic acid for obtaining inhalation compositions. Proceedings of the XXI International Scientific and Practical Conference “New Polymeric Composite Materials. Mikitaev Readings”. 2025. p. 329. (in Russian).

25. Prideaux B., Via L.E., Zimmerman M.D., Eum S., Sarathy J., O’Brien P., Chen C., Kaya F., Weiner D.M., Chen P., Song T., Lee M., Shim T., Cho J.S., Kim W., Cho S.N., Olivier K.N., Barry C.E., Dartois V. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 2015. vol. 21, no. 10. pp. 1223–1227. doi:10.1038/nm.3937.

26. Peloquin C.A., Jaresko G.S., Yong C.L., Keung A.C., Bulpitt A.E., Jelliffe R.W. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob. Agents Chemother. 1997. vol. 41, no. 12. pp. 2670–2679. doi: 10.1128/AAC.41.12.2670.

27. Miranda M.S., Rodrigues M.T., Domingues M.A., Torrado E., Reis R.L., Pedrosa J., Gomes M.E. Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2018. vol. 93. pp. 1090–1103. doi: 10.1016/j.msec.2018.08.016.

28. Donald P.R., Sirgel F.A., Venter A., Parkin D.P., Seifart H.I., van de Wal B.W. Early bactericidal activity of antituberculosis agents. Expert Rev. Anti Infect. Ther. 2003. vol. 1, no. 1. pp. 141–155. doi:10.1586/14787210.1.1.141.

29. Manca C., Tsenova L., Barry C.E., Bergtold A., Freeman S., Haslett P.A., Musser J.M., Freedman V.H., Kaplan G. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J. Immunol. 1999. vol. 162, no. 11. pp. 6740–6746. doi:10.4049/jimmunol.162.11.6740.

30. Marino S., Kirschner D.E. The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 2004. vol. 227. pp. 463–486. doi: 10.1016/j.jtbi.2003.11.023.

31. Gumbo T., Louie A., Liu W., Ambrose P.G., Bhavnani S.M., Brown D., Drusano G.L. Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J. Infect. Dis. 2007. vol. 195, no. 2. pp. 194–201. doi: 10.1086/510247.

32. Jayaram R., Shandil R.K., Gaonkar S., Kaur P., Suresh B.L., Mahesh B.N., Jayashree R., Nandi V., Bharath S., Kantharaj E., Balasubramanian V. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob. Agents Chemother. 2004. vol. 48. pp. 2951–2957. doi:10.1128/AAC.48.8.2951–2957.2004.

33. Donald P.R., Sirgel F.A., Venter A., Parkin D.P., Seifart H.I., van de Wal B.W., Werely C., van Helden P.D., Maritz J.S. The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin. Infect. Dis. 2004. vol. 39. pp. 1425–1430. doi: 10.1086/424519.


Review

For citations:


Shcherbakova L.A., Petrikova E.A., Safarov R.R., Gordienko M.G. Evidence for the Efficacy of a Sustained-Release Inhaled Isoniazid Formulation via Pharmacokinetic/Pharmacodynamic Modeling. Proceedings of the Voronezh State University of Engineering Technologies. 2025;87(3):198-206. (In Russ.) https://doi.org/10.20914/2310-1202-2025-3-

Views: 59


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)