Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

Последние достижения в области распылительной сушки

https://doi.org/10.20914/2310-1202-2025-3-

Abstract

В данной статье представлен краткий обзор принципа работы и устройства аппарата распылительной сушки, включающий обзор доступных распылительных устройств и конфигураций сушильных камер, рассмотрены модификации в области процесса распылительной сушки. Целью обзора является освещение современных тенденций развития распылительной сушки в различных отраслях промышленности, исследование аппаратов распылительных сушилок лабораторного и промышленного масштабов, имеющих практическое применение, а также проблемы и перспективы будущих исследований. Распылительная сушка является хорошо известным технологическим процессом производства частиц, который заключается в диспергировании жидкотекучего материала в поток теплоносителя и последующем формировании частиц в результате интенсивного тепло- массообмена. В настоящее время распылительная сушка широко применяется в различных отраслях промышленности, включая пищевую, химическую и фармацевтическую промышленности. Хотя история этого метода сушки берет свое начало более ста пятидесяти лет назад, распылительная сушка по-прежнему остается объектом исследований и инноваций, поскольку существует спрос на новые конструкторские и технологические решения для снижения энергозатрат, улучшения технологического процесса, инженерии частиц (конструирования частиц с заданными характеристиками) и снижения воздействия на окружающую среду.

About the Authors

Анастасия Мосюрова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»
Russian Federation


Наталья Меньшутина
Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»
Russian Federation


References

1. Lykov M.V., Leonchik B.I Spray dryers. Fundamentals of theory and calculation. Mashinostroenie. (in Russ.). 1966. С. 331.

2. Filková I., Huang L.X., Mujumdar A.S. Industrial spray drying systems. Handbook of industrial drying. 2006. Т. 3, pp. 215-256.

3. Camacho-Lie M. et al. Factors influencing droplet size in pneumatic and ultrasonic atomization and its application in food processing. Discover Food. 2023. no. 3 (1). 23. https://doi.org/10.1007/s44187-023-00065-5

4. Ziaee A. et al. Spray drying of food: principles and applications. Drying Technology in Food Processing. Woodhead Publishing. 2023. pp. 23-155. https://doi.org/10.1016/B978-0-12-819895-7.00010-9

5. Bhandari B.R., Patel K.C., Chen X.D. Spray drying of food materials-process and product characteristics. Drying technologies in food processing. 2008. Т. 4. pp. 113-157.

6. Timonin A.S., Bozhko G.V., Borshchev V.Ya. et al. (A.S. Timonin, Ed Equipment for oil and gas refining, chemical and petrochemical production: a textbook for universities in two books. (Book 2). Infra-Engineering. (in Russ.). 2019. P. 476.

7. Akulich P.V. Calculations of drying and heat exchange units. Belarusian Science. (in Russ.). 2010. P. 443.

8. Khaire R. A., Gogate P. R. Novel approaches based on ultrasound for spray drying of food and bioactive compounds //Drying Technology. 2021. no. (12). pp. 1832-1853. https://doi.org/10.1080/07373937.2020.1804926

9. Company website «RPM Solutions, Inc.». Retrieved September 12, 2025, from https://www.rpmsolutions.com/products-services/atomizer-parts-new/240mm-titanium-wheel/

10. Company website «GEA.». Retrieved September 12, 2025, from https://www.gea.com/en/assets/170518/

11. Salman A. D., Hounslow M., Seville J. P. K. (ed.). Granulation. Elsevier. 2006. no. 11.

12. Company website «Spraying Systems Co». Retrieved September 12, 2025, from https://www.spray.com/-/media/dam/industrial/usa/sales-material/product-market-bulletin/b695c_spraydry_bulletin.pdf

13. Company website «Hoerbiger». Retrieved September 12, 2025, from https://www.piezoproducts.com/products-solutions/ultrasonic-atomizers/

14. Lastow O., Andersson J., Nilsson A., Balachandran W. Low-Voltage Electrohydrodynamic (EHD) Spray Drying of Respirable Particles. Pharmaceutical Development and Technology. 2007. no. 12 (2). pp. 175–181. https://doi.org/10.1080/10837450701212594

15. Chutani D., Huppertz T., Murphy E. Application of Electric Field Technologies in the Manufacture of Food Powders and the Retention of Bioactive Compounds. Powders. 2023. no. 2. pp. 135-150. https://doi.org/10.3390/powders2010010

16. Cal K., Sollohub K. Spray drying technique. I: Hardware and process parameters. Journal of pharmaceutical sciences. 2010. no. 99 (2). pp. 575-586. https://doi.org/10.1002/jps.21886

17. Boda S. K., Li X., Xie J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. Journal of aerosol science. 2018. no. 125. pp. 164-181. https://doi.org/10.1016/j.jaerosci.2018.04.002

18. Bhushani J. A., Anandharamakrishnan C. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science and Technology. 2014. no. 38 (1). pp. 21-33. https://doi.org/10.1016/j.tifs.2014.03.004

19. Masum A. K. M., Saxena J., Zisu B. Electrostatic spray drying of high oil load emulsions, milk and heat sensitive biomaterials. Food Engineering Innovations Across the Food Supply Chain. 2022. pp. 237-246. https://doi.org/10.1016/B978-0-12-821292-9.00022-4

20. Jayaprakash P. et al. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. Journal of Food Engineering. 2023. no. 339. 111260. https://doi.org/10.1016/j.jfoodeng.2022.111260

21. Zisu B., Masum AKM, Pham B. L., Thenin M., Maudhuit A., Beaupeux E., Ackerman, T. E., Rusch J. T., Wee Sit L. J. Electrostatic spray dried active compund powders and production method thereof. U.S. Patent No. US20230240314A1. 2023.

22. Bellinghausen R. Spray drying from yesterday to tomorrow: An industrial perspective. Drying Technology. 2019. no. 37 (5). pp. 612-622. https://doi.org/10.1080/07373937.2018.1517778

23. Wawrzyniak P., Jaskulski M., Piatkowski M., Sobulska M., Zbicinski I. Egan S. Experimental detergent drying analysis in a counter-current spray dryer with swirling air flow. Drying Technology. 2019. no. 38, pp. 108-116. https://doi.org/10.1080/07373937.2019.1626878

24. Jiang N., Kumar G.D., Chen J., Mishra A., Solval K.M. Comparison of concurrent and mixed-flow spray drying on viability, growth kinetics and biofilm formation of Lactobacillus rhamnosus GG microencapsulated with fish gelatin and maltodextrin. LWT. 2020. no. 124. 109200 https://doi.org/10.1016/j.lwt.2020.109200

25. Santos D, Maurício A.C., Sencadas V., et al. Spray Drying: An Overview. Biomaterials - Physics and Chemistry. New Edition. 2018. http://dx.doi.org/10.5772/intechopen.72247

26. Samborska K., Poozesh S., Barańska A., Sobulska M., Jedlińska A., Arpagaus C., Malekjani N., Jafari S.M. Innovations in spray drying process for food and pharma industries. Journal of Food Engineering. 2022. no. 321. 110960. https://doi.org/10.1016/j.jfoodeng.2022.110960

27. Mujumdar A.S. An overview of innovation in industrial drying: current status and R&D needs. Transport in Porous Media. 2007. no. 66. pp. 3-18. https://doi.org/10.1007/s11242-006-9018-y

28. Dantas A., Piella-Rifà M., Pontes Costa D., Felipe X., Gou P. Innovations in spray drying technology for liquid food processing: Design, mechanisms, and potential for application. Applied Food Research. 2024. no. 4 (1). 100382. https://doi.org/10.1016/j.afres.2023.100382

29. Wu Z., Yue L., Li Z., Li J., Mujumdar A.S., Rehkopf J.A., Pulse combustion spray drying of egg white: energy efficiency and product quality //Food Bioprocess Technol. 2014. no. 8 (1). pp. 148-157. https://doi.org/10.1007/s11947-014-1384-9

30. Boel E., Koekoekx R., Dedroog S., Babkin I., Vetrano M.R., Clasen C. Van den Mooter, G. Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying. Pharmaceutics. 2020. no. 12. 625. https://doi.org/10.3390/pharmaceutics12070625

31. Piñón-Balderrama CI., Leyva-Porras C., Terán-Figueroa Y., Espinosa-Solís V., Álvarez-Salas C., Saavedra-Leos MZ. Encapsulation of Active Ingredients in Food Industry by Spray-Drying and Nano Spray-Drying Technologies. Processes. 2020. no. 8 (8). 889. https://doi.org/10.3390/pr8080889

32. Samborska K., Poozesh S., Barańska A., Sobulska M., Jedlińska A., Arpagaus C., Malekjani N., Jafari S.M. Innovations in spray drying process for food and pharma industries. Journal of Food Engineering. 2022. no. 321. 110960, https://doi.org/10.1016/j.jfoodeng.2022.110960.

33. Ioannou Sartzi M., Drettas D., Stramarkou M., Krokida M. A Comprehensive Review of the Latest Trends in Spray Freeze Drying and Comparative Insights with Conventional Technologies. Pharmaceutics. 2024. no. 16 (12). 1533. https://doi.org/10.3390/pharmaceutics16121533

34. Troyankin A.Yu. The process of obtaining macroporous hydrogel particles based on polyvinyl alcohol [Abstract of the dissertation of the candidate of technical sciences, Mendeleev University of Chemical Technology of Russia]. 2012. P. 18

35. Leuenberger H., Plitzko M., Puchkov M. Spray freeze drying in a fluidized bed at normal and low pressure. Drying Technology. 2006. no. 24. pp. 711–719. https://doi.org/10.1080/07373930600684932

36. Company website «Meridion Technologies». Retrieved September 25, 2025, from http://meridion-technologies.de/de/produkte.php

37. Adali M.B., Barresi A.A., Boccardo G., Pisano R. Spray Freeze-Drying as a Solution to Continuous Manufacturing of Pharmaceutical Products in Bulk. Processes. 2020. no. 8 (6). 709. https://doi.org/10.3390/pr8060709

38. Ramos F.M., Júnior V. S, Prata A. S., Impact of vacuum spray drying on encapsulation of fish oil: Oxidative stability and encapsulation efficiency. Food Research International. 2021. no. 143. 110283. https://doi.org/10.1016/j.foodres.2021.110283

39. Sobulska M., Wawrzyniak P., Woo M.W. Superheated Steam Spray Drying as an Energy-Saving Drying Technique: A Review. Energies. 2022. no. 15 (22). 8546. https://doi.org/10.3390/en15228546


Review

For citations:


 ,   . Proceedings of the Voronezh State University of Engineering Technologies. 2025;87(3):207-216. (In Russ.) https://doi.org/10.20914/2310-1202-2025-3-

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)