DETECTION OF MALICIOUS SOFTWARE USING CLASSICAL AND NEURAL NETWORK CLASSIFICATION METHODS
https://doi.org/10.20914/2310-1202-2015-4-85-92
Abstract
integration with modern information technologies, which in turn harmoniously complement and create powerful ardware and software information systems, capable of performing many functions, including pro- information boards. Increasing the flow of information, complexity of the processes and of the hardware and software component devices such as Android, forcing developers to create new means of protection, efficiency and qualitative performing the process. This is especially important in the development of automated systems instrumental performing classification (clustering) of existing software into two classes: safe and malicious software. The aim is to increase the reliability and quality of recognition of modern built-in security of information, as well as the rationale and the selection methods of carrying out these functions. The methods used are: to accomplish the goals are analyzed and used classical methods of classification, neural network method based on standard architectures, and support vector machine (SVM - machine). Novelty: The paper presents the concept of the use of support vector in identifying deleterious software developed methodological, algorithmic and software that implements this concept in relation to the means of mobile communication. Result: The obtained qualitative and quantitative characteristics-security software. Practical value: the technique of development of advanced information security systems in mobile environments such as Android. It presents an approach to the description of behavioral malware (based on the following virus: none - wakes - Analysis of weaknesses - the action: a healthy regime or attack (threat)).
About the Authors
S. V. ZhernakovRussian Federation
Department of electronics and biometric technology, professor
G. N. Gavrilov
Russian Federation
Department of electronics and biometric technology, graduate
References
1. 1 Six J. Application Security for the Android Platform. Processes, Permissions, and Other Safeguards. CA, O’Reilly Media, 2011. 2 p.
2. 2 Zherankov S.V. Gavrilov G.N. Identify malware using advanced predictive method during installation. XIII Mezhdunarodnaya nauchnoprakticheskaya konferentsiya. Nauchnye perspektivy XXI veka [XIII International Scientific-Practical Conference: Scientific Perspectives XXI century. Achievements and prospects of the new century. Publishing House of International Scientific Institute "Educatio"]. 2015. pp. 134-138. (In Russ.).
3. 3 Boyarkin A., Nabiyev N. Analiz Simplelocker-a – virusa-vymogatelya Android [Analysis Simplelocker-a - virus-extortionist for Android. M.: TM, 2014]. Available at: http://habrahabr.ru/company/pentestit/blog/23720 7/ (Accessed 23 October 2015). (In Russ.).
4. 4 Vorontsov K. Metody klasterizatsii [Сlustering methods]. Available at: http://www.MachineLearning.ru/wiki?title=User: Vokov (Accessed 26 October 2015). (In Russ.).
5. 5 Klasternyi analiz [Cluster analysis (clustering)]. Available at: http://statistica.ru/glossarygeneral/klasternyy-analiz-klasterizatsiya/ (Accessed 23 October 2015). (In Russ.).
6. 6 Kotelnikov E., Kozvonina A. Parallel’naya realizatsiya mashiny opornykh vektorov s ispol’zovaniem metodov klasterizatsii [Parallel implementation of support vector machines using clustering methods]. Available at:
7. http://ict.informika.ru/vconf/files/11508.pdf (Accessed 3 October 2015). (In Russ.).
8. 7 Lyubimov N. Mikheyev E. Lukin A. Sravnenie algoritmov klasterizatsii v zadache diktora [Comparison of clustering algorithms in the problem of the speaker. Available at: http://www.researchgate.net/publication/267690636] (Accessed 3 October 2015). (In Russ.).
9. 8 Cherezov D., Tyukachev N. Obzor osnovnykh metodov klassifikatsii i klasterizatsii dannykh [Overview main methods of data classification and clustering. Voronezh Bulletin MAD. 2009. 2014]. Available at: http://www.vestnik.vsu.ru/pdf/analiz/2009/02/2009-02-05.pdf (Accessed 5 October 2015). (In Russ.).
10. 9 Sanz B., Santos I., Nieves J., Laorden C. et al. MADS: Malicious android applications detection through string analysis. Network and System Security, Springer Berlin Heidelberg, 2011, vol. 5, no. Available at: http://www.researchgate.net/publication/256194745_MADS_Malicious_Android_Applications_Detection_through_String_Analysis (Accessed 08 March 2015).
11. 10 Fan Yuhui, Xu Ning The Analysis of Android Malware Behaviors. International Journal of Security and Its Applications, Australia, 2015, vol. 9, no. 3. Available at: http://www.sersc.org/journals/IJSIA/vol9_no3_2015/25.pdf (Accessed 08 March 2015).
12. 11 Arp D., Spreitzenbarth M., Hubner M., Gascon H. et al. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. NDSS Symposium 2014, Switzerland, 2014, vol. 4, no. 1. Available at: https://user.informatik.unigoettingen.de/~krieck/docs/2014-ndss.pdf (Accessed 08 March 2015).
13. 12 Dontsova L., Dontsov E. Sravnenie metoda opornykh vektorov i neironnoi seti pri prognozirovanii [Comparison of the support vector machine and the neural network in predicting bankruptcy]. Available at: http://urf.podelise.ru/docs/1100/index-78995.html (Accessed 8 October 2015). (In Russ.).
14. 13 Neironnye seti [Neural networks]. Available at: http://www.statlab.kubsu.ru/sites/project_bank/nural.pdf (Accessed 14 November 2015). (In Russ.).
15. 14 Borovikov V.P. Neironnye seti [Neural networks. Statistica Neural Networks. Methodology and technology of modern data analysis. Classical and neural network classification methods]. Moscow, FIZMATLIT, 2009. 392 p. (In Russ.).
16. 15 Neironnye seti [Neural networks]. Available at: http://www.statsoft.ru/home/textbook/modules/stneunet.html (Accessed 15 November 2015). (In Russ.).
Review
For citations:
Zhernakov S.V., Gavrilov G.N. DETECTION OF MALICIOUS SOFTWARE USING CLASSICAL AND NEURAL NETWORK CLASSIFICATION METHODS. Proceedings of the Voronezh State University of Engineering Technologies. 2015;(4):85-92. (In Russ.) https://doi.org/10.20914/2310-1202-2015-4-85-92