Development learning algorithm of mobile robot to detect obstacles in confined space
https://doi.org/10.20914/2310-1202-2017-3-65-67
Abstract
About the Authors
O. V. AvseevaM. V. Larina
Russian Federation
References
1. 1 DiGiampaolo E., Martinelli F. Mobile robot localization using the phase of passive UHF RFID signals. IEEE Transactions on Industrial Electronics. 2014. vol. 61. no. 1. pp. 365-376.
2. 2 Pierlot V., Van Droogenbroeck M. A new three object triangulation algorithm for mobile robot positioning. IEEE Transactions on Robotics. 2014. vol. 30. no. 3. pp. 566-577.
3. 3 Duchoň F. et al. Path planning with modified a star algorithm for a mobile robot. Procedia Engineering. 2014. vol. 96. pp. 59-69.
4. 4 Yudintsev B.S., Darintsev O.V. Intelligent system of trajectory planning for mobile robots, built on the Hopfield network. Sovremennye problem nauki I obrazovaniya [Modern problems of science and education] 2014. no. 4. (in Russian)
5. 5 Bobyr M.V., Milostnaya N.A. Fuzzy model of intelligent control system for a mobile robot. Problemy mashinostroeniya I avtomatizatsii [Problems of Mechanical Engineering and Automation] 2015. no. 3. pp. 57-67. (in Russian)
6. 6 Mistrov L.E., Pavlov V.A. Ensuring the conflict sustainability of the information systems on the basis of technical means. Vestnik VGUIT [Proceedings of the VSUET]. 2016. no. 1. pp. 83-88. (in Russian)
7. 7 RoboCraft. Available at: http://robocraft.ru/blog/(in Russian)
8. 8 Levitin A.V. Algoritmy: vvedenie v razrabotku i analiz [Algorithms: introduction to the design and analysis] Moscow, Vil’yams, 2006, 576 p. (in Russian).
Review
For citations:
Avseeva O.V., Larina M.V. Development learning algorithm of mobile robot to detect obstacles in confined space. Proceedings of the Voronezh State University of Engineering Technologies. 2017;79(3):65-67. (In Russ.) https://doi.org/10.20914/2310-1202-2017-3-65-67