Interpolyelectrolyte complexation of sulfonate-containing aromatic polyamide in aqueous solutions: the influence of the nature of the polybases on the composition of the formed products
https://doi.org/10.20914/2310-1202-2018-1-206-210
Abstract
About the Author
N. N. SmirnovaRussian Federation
Dr. Sci. (Chem.), professor, department of chemistry, Gor’kogo St., 87 Vladimir, 600000, Russia
References
1. Kabanov V.A. Polyelectrolyte complexes in solution and in condensed phase. Uspekhi khimii [Russ. Chem. Rev.] 2005, vol. 74. no. 1, pp. 5–24. (in Russian)
2. Izumrudov V.A. Phenomenon of self-Assembly and molecular "recognition" in solutions of (bio)polyelectrolyte complexes. Uspekhi khimii [Russ. Chem. Rev.]. 2008, vol. 77,no. 4. pp. 401–414. (in Russian)
3. Visakh P.M., Bayraktar O., Pic? G.A. Polyelectrolytes. Switzerland: Springer. 2014. 388 p.
4. M?ller M. Polyelectrolyte complexes in the dispersed and solid state. I Principles and theory. Berlin Heidelberg: Springer, 2014. 229 p.
5. Drioli E., Giorno L. Encyclopedia of membranes. Berlin Heidelberg: Springer. 2016. 2199 p.
6. Ng L.Y., Mohammad A.W., Ng Ch.Y., Leo Ch.P. et al. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination. 2014. vol. 351. pp. 19–26.
7. Wang X. S., An Q.F., Lio T., Zhao Q. et al. Novel polyelectrolyte complex membranes containing free sulfate groups with improved pervaporation dehydration of ethanol. J. Membr. Sci. 2014. vol. 452. pp. 73–81.
8. Gregurec D., Olszyna M., Politakos N., Yate L. et al. Stability of polyelectrolyte multilayers in oxidizing media: a critical issue for the development of multilayers based membranes for nanofiltration. Colloid Polym. Sci. 2015. vol. 293. pp. 381–388.
9. Ilyas Sh., Joseph N., Szymczyk A., Volodin A. et al. Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration. J. Membr. Sci. 2016. vol. 514. pp. 322–331.
10. Ettori A., Gaudichet-Maurin E., Aimar P., Causserand Ch. Mass transfer properties of chlorinated aromatic polyamide reverse osmosis membranes // Separ. Purif. Technol. 2012. vol. 101. pp. 60–67.
11. Jin Y., Liang S., Wu Z., Cai Zh. et al. Simulating the growth process of aromatic polyamide layer by monomer concentration controlling method. Appl. Surf. Sci. 2014. vol. 314. pp. 286–291.
12. Wang Ch., Shen B., Zhou Y., Xu Ch. et al. ulfonated aromatic polyamides containing nitrile groups as proton exchange fuel cell membranes. Int. J. Hydrog. Energ. 2015. vol. 40. pp. 6422–6429.
13. Fedotov Yu. A., Smirnova N.N. Aromatic polyamides with ionogenic groups: synthesis, properties and applications. Plasticheskie massy [Plastic] 2008, no. 8, pp. 18–21. (in Russian)
14. Smirnova N.N., Volkov V.I. Interpolyelectrolyte complexation as a tool for contolling the mechanical, sorption and diffusion properties of film materials. Zhurnal prikladnoi khimii [Rus. J. Appl. Chem]. 2015, vol. 88, no 3, pp. 475–483. (in Russian)
Review
For citations:
Smirnova N.N. Interpolyelectrolyte complexation of sulfonate-containing aromatic polyamide in aqueous solutions: the influence of the nature of the polybases on the composition of the formed products. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(1):206-210. (In Russ.) https://doi.org/10.20914/2310-1202-2018-1-206-210