The integration of a biharmonic equation by an implicit scheme
https://doi.org/10.20914/2310-1202-2018-2-114-118
Abstract
About the Author
M. I. PopovRussian Federation
Cand. Sci. (Phys.-Math.), senior lecturer, higher mathematics and information technology department, Revolution Av., 19 Voronezh, 394036, Russia
References
1. Zavialov V.N., Martinov E.A., Romanovskyi V.M. Osnovi stroitelnoy mehaniki plastin [Fundamentals of structural mechanics of plates]. Omsk, SibADI, 2012, 116 p. (in Russian)
2. Shafarets E.B., Shafarets B.P. Free convection taking into account some physical features when modeling convective flows using computational packages. Nauchnoe priborostroenie [Scientific instrument engineering], 2014, vol. 24, no 2, pp. 43–51.(in Russian)
3. Gots A.N. Chislennie metodi raschota v energomashinostroenii [Numerical methods of calculation in power engineering]. Vladimir, VlGU, 2013,182 p.
4. Jani S., Mahmoodi M., Amini M., Jam J. Numerical investigation of natural convection heat transfer in a symmetrically cooled square cavity with a thin fin on its bottom wall. Thermal science, 2014, vol. 18, no. 4, pp. 1119-1132
5. Gros T., Revnic C., Pop I., Ingham D.B. Free convection heat transfer in a square cavity filled with a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 2015. vol. 87. pp. 36–41.
6. Algazin S.D. Chislennie algoritmi klassicheskoi mate-maticheskoi fiziki [Numerical algorithms of classical mathematical physics]. Moscow, Dialod-MIFI, 2010, 240 p. (in Russian)
7. Mu L., Wang J., Ye X. Effective implementation of the weak Galerkin finite element methods for the biharmonic equation. Computers & Mathematics with Applications. 2017. vol. 74. no. 6. pp. 1215-1222.
8. Doss L. J. T., Kousalya N. Finite Pointset Method for biharmonic equations. Computers & Mathematics with Applications. 2018. vol. 75. no. 10. pp. 3756-3785.
9. Doss L. J. T., Kousalya N., Sundar S. A Finite Pointset Method for Biharmonic Equation Based on Mixed Formulation. International Journal of Computational Methods. 2017. pp. 1850068.
10. Ryzhskih V.I., Slusarev M.I., Popov M.I. Numerical integration of a biharmonic equation in square area. Vestnik Sankt-Peterburgskogo universiteta [Bulletin of the Saint-Petersburg university], 2013, no. 10, vol. 1, pp. 52–62. (in Russian)
11. Popov M.I., Soboleva E.A. The approximate analytical solution of the internal problem of conductive and laminar free convection. Vestnik Voronezhskogo Universiteta Ingenernih Tehnologyi [Proceedings of the Voronezh State University of Engineering Technologies], 2016 no. 4, pp. 78–84 (in Russian)
12.
13.
Review
For citations:
Popov M.I. The integration of a biharmonic equation by an implicit scheme. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(2):114-118. (In Russ.) https://doi.org/10.20914/2310-1202-2018-2-114-118