Technological solutions for intelligent data processing in the food industry
https://doi.org/10.20914/2310-1202-2018-2-256-263
Abstract
About the Authors
M. A. NikitinaCand. Sci. (Engin.), associate professor, leading scientific worker, the Head of the Direction of Information Technologies of the Center of Economic and Analytical Research and Information Technologies, Talalikhina Str., 26, Moscow, 109316, Russia
V. A. Pchelkina
Cand. Sci. (Engin.), leading scientific worker, Experimental clinic-laboratory of biological active substances of an animal origin, Talalikhina Str., 26, Moscow, 109316, Russia
O. A. Kuznetsova
Dr. Sci. (Engin.), director, Talalikhina Str., 26, Moscow, 109316, Russia
References
1. Mak-Kallok U.S., Pitts V. A logical calculus of the ideas related to neural activity. Avtomaty [Automats] 1956. pp. 363–384. (in Russian)
2. Le Cun Y., Ranzato M. Deep Learning. Tutorial ICML, Atlanta. Available at: http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf.
3. Bone X-Ray Deep Learning Competition. Available at: https://stanfordmlgroup.github.io/ competitions/mura.
4. Poplin R., Varadarajan A.V., Blumer K., Liu Y. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering volume. 2018. no. 2. pp. 158–164. DOI: 10.1038/s41551–018–0195–0.
5. Chinese farmers are using AI to help rear the world’s biggest pig population. Available at: https://www.theverge.com.
6. Deng J., Dong W., Socher R., Li L. – J. et al. Imagenet: A large-scale hierarchical image databaseю Computer Vision and Pattern Recognition. 2009. CVPR . IEEEConferenceon. 2009. pp. 248–255.
7. Hannun A., Case C., Casper J., Catanzaro B. et al. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXir:1412.5567, 2014.
8. Rajpurkar P., Zhang J., Lopyrev K., Liang P. Squad:100,000+ questions for machine comprehension of text. arXiv preprint arXiv: 1606.05250, 2016.
9. Gulshan V., Peng L., Coram M., Stumpe M.C. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs // Jama. 2016. no. 316(22). pp. 2402–2410.
10. Esteva A., Kuprel B., Novoa R.A., Ko J. et al. Dermatologist-level classification of skin cancer with deep neural networks // Nature. 2017. no. 542(7639). pp. 115–118.
11. Rajpurkar P., Hannun A.Y., Haghpanahi M., Bourn C. et al. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint arXiv:1707.01836, 2017.
12. Grewal M., Srivastava M.M., Kumar P., Varadarajan S. Radnet: Radiologist level accuracy using deep learning for hemorrhage detection in ct scans. arXiv preprint arXiv:1710.04934, 2017.
13. Rajpurkar P., Irvin J., Zhu K., Yang B. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv: 1711.05225, 2017.
14. Gale W., Oakden-Rayner L., Carneiro G., Bradley A.P. et al. Detecting hip fractures with radiologist-level performance using deep neuralnetworks/ arXiv e-prints, 2017.
15. Wang X., Peng Y., Lu L., Lu Z. et al. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. arXiv preprint arXiv: 1705.02315, 2017.
16. Plyasheshnik P.I., Glebochev S.N., Shihow S.S. Raw materials under full control. Myasnaya industriya [Meat Industry]. 2015, no. 1, pp. 37–39. (in Russian).
17. The Best & Donovan Acra-Grade System. Operation and Maintenance Manual. Revision 4. Available at: http://www.bestanddonovan.com/acragrademanual.html#overview.
18. AutoFom III. Fully Automatic Ultrasonic Carcass Grading. Available at:http://www.carometec.com/products/item/autoform-III.
19. Kutsky J.A., Savell J.W., Johnson D.D., Smith G.C. et al. Predicting cutability of pork carcasses and hams using the Hennessy and Chong Fat Depth Indicator // Meat science. 1984. no. 11. pp. 13–26.
20. Listrat A., Lebret B., Louveau I. et al. How Muscle Structure and Composition Influence Meat and Flesh Quality // The Scientific World Journal. 2016. pp. 3182746. DOI: 10.1155/2016/3182746
21. Enikel D. Structure of muscle and meat quality //Fleischwirtschaft. 1987. no. 4. pp. 461–465.
22. Bendall I.R., Swatland H.J. A review of the relationships of pH with physical aspects of quality // Meat Science. 1988. no. 2(24). pp. 85–126.
23. Hvilia S.I. Comparative electronic histochemical analysis of meat with DFD and PSE defects //Technologija mesa. 1999. no. 1(40). pp. 13–16.
Review
For citations:
Nikitina M.A., Pchelkina V.A., Kuznetsova O.A. Technological solutions for intelligent data processing in the food industry. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(2):256-263. (In Russ.) https://doi.org/10.20914/2310-1202-2018-2-256-263