Comparative analysis of morpho-physiological features of Triticum vulgare sprouts after exposure to metal nanoparticles
https://doi.org/10.20914/2310-1202-2018-3-190-195
Abstract
About the Authors
A. M. KorotkovaRussian Federation
Cand. Sci. (Biol.), Experimental-Biological Clinic (Vivarium), Orenburg, 9 January, 29
O. V. Kvan
researcher, Institute Biojelementology, Orenburg, Pobedy sq., 13
L. A. Bykova
Cand. Sci. (Engin.), Life Safety department, Orenburg, Pobedy sq., 13
O. S. Kudryavtseva
student, Biochemistry and Microbiology department, Orenburg, Pobedy sq., 13
T. S. Videneeva
A. I. Vishnyakov
References
1. Korotkova A.M. Vliianie nanochastits metallov i ikh oksidov na fiziologo-biokhimicheskie pokazateli rasteniia Triticum vulgare Vill [Influence of nanoparticles of metals and their oxides on the physiological and biochemical parameters of the plant Triticum vulgare Vill] Ufa, Bashkir State University, 2017. 194 p. (in Russian)
2. Khana I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2017. Available at: https://doi.org/10.1016/j.arabjc.2017.05.011.
3. Deryabina T.D. Adaptivnye reaktsii i predely tolerantnosti Triticum aestivum i Allium cepa L k nanochastitsam medi i zheleza [Adaptive reactions and tolerance limits of Triticum aestivum and Allium cepa L. to copper and iron nanoparticles] Orenburg, 2015, 23 p. (in Russian)
4. Masarovicova E., Kralova K. Metal nanoparticles and plants. Ecol. Chem. Eng. 2013. no. 20(1). pp. 9–22.
5. Faisal M., Saquib Q., Alatara A. А., Al-Khedhairy A.A. Phytotoxic hazards of NiО-nanoparticles in tomato: a study on mechanism of cell death. J. of Hazardous Materials. 2013. no. 250–251. pp. 318–332.
6. Kornilina V.V. The influence of false aspen tinder on the pigment content in aspen leaves in the forests of the Ulyanovsk region. Fundamentalnye issledovaniia [Basic research] 2012. vol. 3. no. 9. pp. 568–572. (in Russian)
7. Dimkpa C.O., McLean J.E., Latta D.E., Manango E. et al. СuО and ZnО nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat, J. Nanopart. Res. 2012. no. 814(9). pp. 1125–1129.
8. Higuchi Y. Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J. Cell. Mol. Med. 2004. no. 8. pp. 455–464.
9. Gerald L.N., Jamie R.M. Fluorescence detection of hydroxyl radicals. Radiat. Phys. Chem. 2006. no. 75. pp. 473–478.
10. Wilkins D.A. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist. 1978. no. 80. pp. 623–633.
11. Nair P.M., Chung I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. Int. 2014. no. 21. pp. 12709–127022.
12.
Review
For citations:
Korotkova A.M., Kvan O.V., Bykova L.A., Kudryavtseva O.S., Videneeva T.S., Vishnyakov A.I. Comparative analysis of morpho-physiological features of Triticum vulgare sprouts after exposure to metal nanoparticles. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(3):190-195. (In Russ.) https://doi.org/10.20914/2310-1202-2018-3-190-195