Heat storage materials based on nanomodified paraffin, controlled by a magnetic field
https://doi.org/10.20914/2310-1202-2018-4-344-348
Abstract
About the Authors
A. V. ShchegolkovRussian Federation
Cand. Sci. (Engin.), associate professor, technology and technology of production of nanoproducts department, Sovetskaya str., 106, Tambov, 392000, Russia
A. V. Shchegolkov
graduate student, technology and technology of production of nanoproducts department, Sovetskaya str., 106, Tambov, 392000, Russia
V. S. Yagubov
graduate student, technology and technology of production of nanoproducts department, Sovetskaya str., 106, Tambov, 392000, Russia
A. S. Zorin
graduate student, technical mechanics and machine parts department, Sovetskaya str., 106, Tambov, 392000, Russia
A. V. Kobelev
Cand. Sci. (Engin.), associate professor, electricity department, Sovetskaya str., 106, Tambov, 392000, Russia
References
1. Beckman G., Ghilli P. Teplovoe akkumulirovanie ehnergii [Thermal energy storage]. Moscow, Mir, 1987. 272 p. (in Russian).
2. Levenberg V.D., Tkach M.R., Holstrum V.A. Akkumulirovanie tepla [Heat accumulation]. Kiev, Tehnika, 1991. 112 p. (in Russian).
3. Fan L., Khodadadi J.M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and sustainable energy reviews. 2011. vol. 15. pp. 24–46.
4. Xu X., Pereira L.F., Wang Y., Wu J. et al. Length-dependent thermal conductivity in suspended single-layer grapheme. Nature communication. 2014. vol. 5. no. 3689. pp. 1–6.
5. Renteria J.D., Nika D.L., Balandin A.A. Graphene thermal properties: applications in thermal management and energy storage. Applied sciences. 2014. vol. 4. pp. 525–547.
6. Abdurahmanov G.M., Lopatin I.K. Osnovy zoologii i zoogeografii [Basics of zoology and zoogeography]. Moscow, Akademiya, 2001. 496 p. (in Russian).
7. Liu X., Rao Z. Experimental study on the thermal performance of graphene andexfoliated graphite sheet for thermal energy storage phase changematerial. Thermochimica acta. 2017. vol. 647. pp. 15–21.
8. Sridhar S., Tiwary C., Vinod S., Taha-Tijerina J.J. et al. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS nano. 2014. vol. 8. no. 8. pp. 7763-7770.
9. Ma R., Hu J., Cai Z., Ju H. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides. Nanoscale. 2014. vol. 6. no. 6. pp. 3150-3156.
10. Liu X., Marangon I., Melinte G., Wilhelm C. et al. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation. ACS nano. 2014. vol. 8. no. 11. pp. 11290-11304.
Review
For citations:
Shchegolkov A.V., Shchegolkov A.V., Yagubov V.S., Zorin A.S., Kobelev A.V. Heat storage materials based on nanomodified paraffin, controlled by a magnetic field. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(4):344-348. (In Russ.) https://doi.org/10.20914/2310-1202-2018-4-344-348