The bioreactor with use of impeller mixers for cultivation of biomass of microalgas
https://doi.org/10.20914/2310-1202-2019-1-32-35
Abstract
About the Authors
L. I. LytkinaRussian Federation
Dr. Sci. (Engin.), professor, bakery technology, confectionery, pasta and grain processing industries department, Revolution Av., 19 Voronezh, 394036, Russia
E. S. Shentsova
Dr. Sci. (Engin.), professor, bakery technology, confectionery, pasta and grain processing industries department, Revolution Av., 19 Voronezh, 394036, Russia
D. V. Koptev
master student, ,, Truda Ave, 93, Voronezh, 394026, Russia
N. Yu. Sitnikov
Cand. Sci. (Engin.), ,, Truda Ave, 93, Voronezh, 394026, Russia
References
1. Drannikov A.V., Shevtsov A.A., Koptev D.V., Tertychnaya T.N., Mazhulina I.V., Mishinev K.V. Apparat dlya kul'tivirovaniya fotoavtotrofnykh mikroorganizmov [The device for cultivation of photoautotrophic microorganisms]. Patent RF, no. 2650804, 2018.
2. Shevtsov A.A., Drannikov A.V., Ponomarev A.V., Sitnikov N.Yu. Bioreaktor of film type for suspension of photoautotrophic microorganisms. Biotekhnologicheskiye sistemy v proizvodstva pishchevogo syr'ya i produktov [Biotechnological systems in proizvodstvepishchevy raw materials and products: innovative potential and prospects of development: materials of the International scientific and technical conference]. Voronezh, VSUET, 2011. pp 204–206. (in Russian).
3. Yao Y., Ge Y.F., Thomasson J.A., Sui R.X. Algae optical density sensor for pond monitoring and production process control. International Journal of Agricultural and Biological Engineering. 2018. vol. 11. no. 1. pp. 212–217.
4. Valencia R., Giffard-Mena I., Cruz-Lopez R., Garcia-Mendoza E. et al. Growth Profiles, Nutrient composition and Pigments Analysis of Dunaliella salina strain San Quintin. CICIMAR Oceanides. 2018. vol. 33. no. 2. pp. 1–11.
5. Yang Z., Cheng J., Yang W., Zhou J. et al. Developing a water-circulating column photobioreactor for microalgal growth with low energy consumption. Bioresource technology. 2016. vol. 221. pp. 492–497.
6. Bazdar E., Roshandel R., Yaghmaei S., Mardanpour M.M. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresource technology. 2018. vol. 261. pp. 350–360.
7. Yan N., Fan C., Chen Y., Hu Z. The potential for microalgae as bioreactors to produce pharmaceuticals. International journal of molecular sciences. 2016. vol. 17. no. 6. pp. 962.
8. Hosseini N.S. et al. Microalgae cultivation in a novel top-lit gas-lift open bioreactor. Bioresource technology. 2015. vol. 192. pp. 432–440.
9. Kuznetsova I.V., Lygina L.V., Netesova G.A. Water condition in cells of chlorella. Vestnik VGUIT [Proceedings of VSUET]. 2015. no. 4. pp. 160–164. (in Russian).
10. Sokolan N.I., Kuranova L.K., Voron N.G., Grokhovskii V.A. Investigation of the possibility of producing sodium alginate from the product of processing fucus algae. Vestnik VGUIT [Proceedings of VSUET]. 2018. vol. 80. no. 1. pp. 161–167. doi: 10.20914/2310-1202-2018-1-161-167 (in Russian).
Review
For citations:
Lytkina L.I., Shentsova E.S., Koptev D.V., Sitnikov N.Yu. The bioreactor with use of impeller mixers for cultivation of biomass of microalgas. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(1):32-35. (In Russ.) https://doi.org/10.20914/2310-1202-2019-1-32-35