Numerical study of the dynamics and optimization of the modes of air adsorption separation and oxygen concentration
https://doi.org/10.20914/2310-1202-2019-1-310-317
Abstract
About the Authors
E. I. AkulininRussian Federation
Cand. Sci. (Engin.), associate professor, technologies and equipment of food and chemical industries department, Sovetskaya str., 106, Tambov, 393200, Russia
O. O. Golubyatnikov
Cand. Sci. (Engin.), senior lecturer, technologies and equipment of food and chemical industries department, Sovetskaya str., 106, Tambov, 393200, Russia,
D. S. Dvoretsky
Dr. Sci. (Engin.), professor, technologies and equipment of food and chemical industries department, ul. Sovetskaya, 106, Tambov, 393200, Russia,
S. I. Dvoretsky
Dr. Sci. (Engin.), professor, technologies and equipment of food and chemical industries department, Sovetskaya str., 106, Tambov, 393200, Russia,
References
1. Moran A., Talu O. Limitations of portable pressure swing adsorption processes for air separation. Ind. Eng. Chem. Res. 2018. vol. 57. no. 35. pp. 11981–11987.
2. Li J.H. The experimental study of a new pressure equalization step in the pressure swing adsorption cycle of a portable oxygen concentrator. Bio-medical Materials and Engineering. 2014. vol. 24. no. 5. pp. 1771–1779.
3. Wu C., Vemula R., Kothare M., Sircar S. Experimental Study of a Novel Rapid Pressure-Swing Adsorption Based Medical Oxygen Concentrator: Effect of the Adsorbent Selectivity of N2 over O2. Ind. Eng. Chem. Res. 2016. vol. 55. no. 16. pp. 4676–4681.
4. Xu M., Wu H.-C., Lin Y.S., Deng S. Simulation and optimization of pressure swing adsorption process for high-temperature air separation by perovskite sorbents. Chemical Engineering Journal. 2018. no. 354. pp. 62–74.
5. Ding Z., Han Z., Fu Q., Shen Y. et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production. Adsorption. 2018. vol. 24. no. 5. pp. 499–516.
6. Kirillin V.А., SychevV.V., Sheindlin А.Е. Tekhnicheskaya termodinamika [Technical thermodynamics]. Moscow, Publishing house MEI, 2016. 496 p. (in Russian).
7. Shokroo E., Farsani D., Meymandi H., Yadoliahi N. Comparative study of zeolite 5A and zeolite 13X in air separation by pressure swing adsorption. Korean Journal of Chemical Engineering. 2016. vol. 33. no. 4. pp. 1391–1401.
8. Beeyani A.K., Singh K., Vyas R.K., Kumar S. et al. Parametric studies and simulation of PSA process for oxygen production from air. Polish Journal of Chemical Technology. 2010. vol. 12. no. 2. pp. 18–28.
9. Hosseinzadeh Hejazi S.A., Estupinan Perez L., Rajendran A., Kuznicki S. Cycle Development and Process Optimization of High-Purity Oxygen Production Using Silver-Exchanged Titanosilicates. Industrial and Engineering Chemistry Research. 2017. vol. 56. no. 19. pp. 5679–5691.
10. Yagodovskiy, V.D. Adsorbtsiya [Adsorption]. Мoscow, BINOM. Laboratoriya znaniy, 2015. 219 p (in Russian).
11. Skvortsov S.A., Akulinin E.I., Golubyatnikov O.O., Dvoretsky D.S. et al. Mathematical modelling of cyclic pressure swing adsorption processes. Journal of Physics: Conference Series. 2018. vol. 1015.
12. Akulinin EI, Golubyatnikov O.O., Dvoretsky DS, Dvoretsky S.I. Optimal design of short-cycle adsorption plants for the concentration of oxygen. Izvestiya SPbGTI(TU) [Bulletin of St PbSIT(TU)]. 2017. no. 41. pp. 103–111. (in Russian).
13. Rice R.G., Do D.D. Applied Mathematics and Modeling for Chemical Engineers: 2 ed. NewJersey, 2012.
14. Gol'dshteyn A.L. Optimizatsiya v srede MATLAB [Optimization in the MATLAB environment]. Perm, PNRPU, 2015. 192 p. (in Russian).
15.
Review
For citations:
Akulinin E.I., Golubyatnikov O.O., Dvoretsky D.S., Dvoretsky S.I. Numerical study of the dynamics and optimization of the modes of air adsorption separation and oxygen concentration. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(1):310-317. (In Russ.) https://doi.org/10.20914/2310-1202-2019-1-310-317