Разработка математических моделей испытательных систем как объектов с сосредоточенными параметрами
https://doi.org/10.20914/2310-1202-2020-2-42-48
Аннотация
Об авторах
Д. О. АбрамовТ. Н. Швецова-Шиловская
д.т.н., профессор, начальник отделения, ш. Энтузиастов, 23, Москва, 111024, Россия
Д. И. Назаренко
к.т.н., ведущий научный сотрудник, ш. Энтузиастов, 23, Москва, 111024, Россия
Список литературы
1. Dobre T.G., Marcano J.G.S. Chemical engineering: Modeling, simulation and similitude. John Wiley & Sons, 2007.
2. Vasil’ev E.N. Calculation and optimization of thermoelectric cooling modes of thermally loaded elements // Technical Physics. 2017. V. 62. № 1. P. 90-96.
3. Yang W., Chen Z. Investigation of the thermal-elastic problem in cracked semi-infinite FGM under thermal shock using hyperbolic heat conduction theory // Journal of Thermal Stresses. 2019. V. 42. № 8. P. 993-1010.
4. Zhumagulov M., Yerkalina M., Sadykova S. Mathematical modeling of heat transfer processes in a layer of moving coked particles // Petroleum & Coal. 2020. V. 62. № 2.
5. Foteinopoulos P., Papacharalampopoulos A., Stavropoulos P. On thermal modeling of Additive Manufacturing processes // CIRP Journal of Manufacturing Science and Technology. 2018. V. 20. P. 66-83.
6. Debbarma M., Sudhakar K., Baredar P. Thermal modeling, exergy analysis, performance of BIPV and BIPVT: a review // Renewable and Sustainable Energy Reviews. 2017. V. 73. P. 1276-1288.
7. Maluk C., Bisby L., Krajcovic M., Torero J.L. A heat-transfer rate inducing system (H-TRIS) test method // Fire Safety Journal. 2019. V. 105. P. 307-319.
8. Wang Z., Wang F., Liu J., Ma Z. et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system // Energy Conversion and Management. 2017. V. 153. P. 603-615.
9. D’Alessandro V., Binci L., Montelpare S., Ricci R. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge–Kutta schemes for incompressible flows with heat transfer // Computer Physics Communications. 2018. V. 222. P. 14-30.
10. Baghban A., Kahani M., Nazari M.A., Ahmadi M.H. et al. Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils // International Journal of Heat and Mass Transfer. 2019. V. 128. P. 825-835.
Рецензия
Для цитирования:
Абрамов Д.О., Швецова-Шиловская Т.Н., Назаренко Д.И. Разработка математических моделей испытательных систем как объектов с сосредоточенными параметрами. Вестник Воронежского государственного университета инженерных технологий. 2020;82(2):42-48. https://doi.org/10.20914/2310-1202-2020-2-42-48
For citation:
Abramov D.O., Shvetsova T.N., Nazarenko D.I. Development of mathematical models of test systems as objects with lumped parameters. Proceedings of the Voronezh State University of Engineering Technologies. 2020;82(2):42-48. (In Russ.) https://doi.org/10.20914/2310-1202-2020-2-42-48