Development of mathematical models of test systems as objects with lumped parameters
https://doi.org/10.20914/2310-1202-2020-2-42-48
Abstract
About the Authors
D. O. AbramovT. N. Shvetsova
Dr. Sci. (Engin.), professor, ,, Enthusiasts, 23, Moscow, 111024, Russia
D. I. Nazarenko
Cand. Sci. (Engin.), , leading researcher,, Enthusiasts, 23, Moscow, 111024, Russia
References
1. Dobre T.G., Marcano J.G.S. Chemical engineering: Modeling, simulation and similitude. John Wiley & Sons, 2007.
2. Vasil’ev E.N. Calculation and optimization of thermoelectric cooling modes of thermally loaded elements. Technical Physics. 2017. vol. 62. no. 1. pp. 90-96.
3. Yang W., Chen Z. Investigation of the thermal-elastic problem in cracked semi-infinite FGM under thermal shock using hyperbolic heat conduction theory. Journal of Thermal Stresses. 2019. vol. 42. no. 8. pp. 993-1010.
4. Zhumagulov M., Yerkalina M., Sadykova S. Mathematical modeling of heat transfer processes in a layer of moving coked particles. Petroleum & Coal. 2020. vol. 62. no. 2.
5. Foteinopoulos P., Papacharalampopoulos A., Stavropoulos P. On thermal modeling of Additive Manufacturing processes. CIRP Journal of Manufacturing Science and Technology. 2018. vol. 20. pp. 66-83.
6. Debbarma M., Sudhakar K., Baredar P. Thermal modeling, exergy analysis, performance of BIPV and BIPVT: a review. Renewable and Sustainable Energy Reviews. 2017. vol. 73. pp. 1276-1288.
7. Maluk C., Bisby L., Krajcovic M., Torero J.L. A heat-transfer rate inducing system (H-TRIS) test method. Fire Safety Journal. 2019. vol. 105. pp. 307-319.
8. Wang Z., Wang F., Liu J., Ma Z. et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system. Energy Conversion and Management. 2017. vol. 153. pp. 603-615.
9. D’Alessandro V., Binci L., Montelpare S., Ricci R. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge–Kutta schemes for incompressible flows with heat transfer. Computer Physics Communications. 2018. vol. 222. pp. 14-30.
10. Baghban A., Kahani M., Nazari M.A., Ahmadi M.H. et al. Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils. International Journal of Heat and Mass Transfer. 2019. vol. 128. pp. 825-835.
Review
For citations:
Abramov D.O., Shvetsova T.N., Nazarenko D.I. Development of mathematical models of test systems as objects with lumped parameters. Proceedings of the Voronezh State University of Engineering Technologies. 2020;82(2):42-48. (In Russ.) https://doi.org/10.20914/2310-1202-2020-2-42-48