Toxicity of new fungicides for eukaryotic microorganisms isolated from the gut of the food-important vegetable pollinator Bombus terrestris L.
https://doi.org/10.20914/2310-1202-2020-4-54-59
Abstract
Currently, there is a trend in decreasing of the number of pollinators, which is already a matter of food security. Bumblebees Bombus terrestris L. are economically important pollinators of vegetables and other agricultural crops. Recently, it has been suggested that the synergistic effect of pesticides and diseases that affect pollinators contributes to a sharp decline in the number of pollinators. In this work, we investigated the effect of new biodegradable fungicides on eukaryotic microorganisms Penicillium commune and Rhodotorula mucilaginosa isolated from the gut of Bombus terrestris L. larvae. It was shown that the new fungicides studied can inhibit the growth of both mycelial eukaryotic microorganisms and yeast eukaryotic microorganisms. Among the studied substances, the most effective was fungicide 2. The studied substances are selectively toxic only for eukaryotic microorganisms and do not have a toxic effect on animals, in particular insects, and can be used to treat insect pollinator infections caused by fungal microorganisms. It was noted that the new fungicides are more toxic to yeast than to mycelial fungi.
About the Authors
M. Y. SyromyatnikovRussian Federation
Cand. Sci. (Biol.), associate professor, leading researcher, laboratory of metagenomics and food biotechnologies, 72 Sakko and Vanzetti str., Voronezh, 394036, Russia
O. V. Savinkova
graduate student, genetics, cytology and bioengineering department, 1 Universitetskaya sq., Voronezh, 394018, Russia
V. N. Popov
Dr. Sci. (Biol.), professor, rector, 19 Revolution Av., Voronezh, 394036, Russia
References
1. Potts S.G., Biesmeijer J.C., Kremen C., Neumann P. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010. vol. 25. no. 6. pp. 345–353. doi: 10.1016/j.tree.2010.01.007
2. Rhodes C.J. Pollinator decline – an ecological calamity in the making? Sci. Prog. 2018. vol. 101. no. 2. pp. 121–160. doi: 10.3184/003685018X15202512854527
3. Thomann M., Imbert E., Devaux C., Cheptou P.O. Flowering plants under global pollinator decline. Trends Plant Sci. 2013. vol. 18. no. 7. pp. 353–359. doi: 10.1016/j.tplants.2013.04.002
4. Klein A.M., Vaissiere B.E., Cane J.H., Steffan-Dewenter I. et al. Importance of pollinators in changing landscapes for world crops. Proc. Roy. Soc. B. 2007. vol. 274. no. 1608. pp. 303–313. doi: 10.1098/rspb.2006.3721
5. Lu C., Warchol K.M., Callahan R.A. Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bulletin of Insectology. 2014. vol. 67. no.1. pp. 125–130.
6. Simon-Delso N, San Martin G, Bruneau E, Minsart L-A. et al. Honeybee colony disorder in crop areas: the role of pesticides and viruses. PLoS ONE. 2014. vol. 9. no. 7. e103073. doi: 10.1371/journal.pone.0103073
7. Bryden J, Gill R.J., Mitton R.A., Raine N.E. et al. Chronic sublethal stress causes bee colony failure. Ecol Lett. 2013. vol. 16. no. 12. pp. 1463–1469. doi: 10.1111/ele.12188
8. Fisher A., Coleman C., Hoffmann C., Fritz B. et al. The Synergistic Effects of Almond Protection Fungicides on Honey Bee (Hymenoptera: Apidae) Forager Survival. J. Econ. Entomol. 2017. vol. 110. no. 3. pp. 802–808. doi: 10.1093/jee/tox031
9. Raimets R., Karise R., Mand M., Kaart T. et al. Synergistic interactions between a variety of insecticides and an ergosterol biosynthesis inhibitor fungicide in dietary exposures of bumble bees (Bombus terrestris L.). Pest Manag. Sci. 2018. vol. 74. no. 3. pp. 541–546. doi: 10.1002/ps.4756
10. Zhu Y.C., Yao J.X., Adamczyk J., Luttrell R. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS ONE. 2017. vol. 12. no.6. e0178421. doi: 10.1371/journal.pone.0178421
11. Sgolastra F., Medrzycki P., Bortolotti L., Renzi M.T. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag. Sci. 2017. vol. 73. no. 6. pp. 1236–1243. doi: 10.1002/ps.4449
12. Degrandi-Hoffman G., Chen Y., Dejong W.E., Chambers M.L. et al. Effects of Oral Exposure to Fungicides on Honey Bee Nutrition and Virus Levels. J Econ Entomol. 2015. vol. 108. no. 6. pp. 2518–2528. doi: 10.1093/jee/tov251
13. Lopez J.H., Krainer S., Engert A., Schuehly W. et al. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Sci. ReP. 2017. vol. 7. pp. 40853. doi: 10.1038/srep40853
14. Grassl J., Holt S., Cremen N., Peso M. et al. Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. J. Invertebr. Pathol. 2018. vol. 159. pp. 78–86. doi: 10.1016/j.jip.2018.10.005
15. Aufauvre J., Biron D.G., Vidau C., Fontbonne R. et al. Parasite-insecticide interactions: A case study of Nosema ceranae and fipronil synergy on honeybee. Sci. ReP. 2012. vol. 2. pp. 326. doi: 10.1038/srep00326
16. White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. New York: Academic Press. 1990. vol. 18. pp. 315–322.
Review
For citations:
Syromyatnikov M.Y., Savinkova O.V., Popov V.N. Toxicity of new fungicides for eukaryotic microorganisms isolated from the gut of the food-important vegetable pollinator Bombus terrestris L. Proceedings of the Voronezh State University of Engineering Technologies. 2020;82(4):54-59. (In Russ.) https://doi.org/10.20914/2310-1202-2020-4-54-59