Вестник Воронежского государственного университета инженерных технологий

Расширенный поиск

Microgreens: a newly merging product, aspects, prospectives, and disadvantages

Полный текст:


In this article we demonstrate the connotation of microgreens, the newly merging product in the Russian market. Microgreens are normal plants planted in highly density on a substrate medium and harvested shortly after the first true leaves appear. Microgreens of many aromatic plants possess intensive flavour similar to its mature product. We also expound the aspects related to this product, including growth, harvesting time, Seeds utilization, light requirements, available suitable substrate, as well as the disadvantages related to its production. There is still a lot of controversy about the health benefits of consuming microgreens. Some researchers believe that there is currently not enough scientific evidence to support a higher nutrient level in microgreens than in mature plants. In this review, we discuss whether microgreening is a great addition to gardening or not. Still, other prospects for the future of this product indicates that the demand of the market for the microgreens will be strong especially with the wide spread of home-growing facilities like phytotrons and simple growing chambers.

Об авторах

Ali J. Othman
Российский экономический университет имени Г. В. Плеханова

Ludmila G. Eliseeva
Российский экономический университет имени Г. В. Плеханова

Daria V. Simina
Российский экономический университет имени Г. В. Плеханова

Список литературы

1. McClung C.R. Plant science. Making hunger yield. Science. 2014. vol. 344. pp. 699–700. doi: 10.1126/science.1254135

2. Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L. et al. Food security: the challenge of feeding 9 billion people. Science. 2010. vol. 327. no. 5967. pp. 812-818. doi: 10.1126/science.1185383

3. Godfray H.C.J., Garnett T. Food security and sustainable intensification. Philosophical transactions of the Royal Society B: biological sciences. 2014. vol. 369. no. 1639. pp. 20120273. doi: 10.1098/rstb.2012.0273

4. Lutz W., KC S. Dimensions of global population projections: what do we know about future population trends and structures? Philosophical Transactions of the Royal Society B: Biological Sciences. 2010. vol. 365. no. 1554. pp. 2779-2791. doi: 10.1098/rstb.2010.0133

5. Di Gioia F., De Bellis P., Mininni C., Santamaria P. et al. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. Journal of the Science of Food and Agriculture. 2017. vol. 97. no. 4. pp. 1212-1219. doi: 10.1002/jsfa.7852

6. Treadwell D.D., Hochmuth R., Landrum L., Laughlin W. Microgreens: A new specialty crop. EDIS. 2010. vol. 2010. no. 3

7. Di Gioia F., Santamaria P. Microgreens-Novel fresh and functional food to explore all the value of biodiversity. Italy: ECO-logica srl Bari. 2015. vol. 118.

8. Xiao Z., Bauchan G., Nichols-Russell L., Luo Y. et al. Proliferation of Escherichia coli O157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems. Journal of Food Protection. 2015. vol. 10. pp. 1785–1790. doi: 10.4315/0362-028X.JFP-15-063

9. Xiao Z., Nou X., Luo Y., Wang Q. Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds. Food Microbiology. 2014. vol. 44. pp. 60-63. doi: 10.1016/

10. Nayak S. L., Dhami K. S., Sahu D. Microgreens: A Potential Source of Energy. Biotica Research Today. 2021. vol. 3. no. 2. pp. 098-099.

11. Samuolienė G., Brazaitytė A., Jankauskienė J., Viršilė A. et al. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Central European Journal of Biology. 2013. vol. 8. no. 12. pp. 1241-1249. doi: 10.2478/s11535-013-0246-1

12. Xiao Z., Lester G.E., Luo Y., Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of agricultural and Food Chemistry. 2012. vol. 60. no. 31. pp. 7644-7651. doi: 10.1021/jf300459b

13. Xiao Z., Codling E.E., Luo Y., Nou X. et al. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis. 2016. vol. 49. pp. 87-93. doi: 10.1016/j.jfca.2016.04.006

14. Sun J., Xiao Z., Lin L., Lester G.E. et al. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS n. Journal of agricultural and food chemistry. 2013. vol. 61. no. 46. pp. 10960-10970. doi: 10.1021/jf401802n

15. Oh M., Carey E.E., Rajashekar C.B. Regulated water deficits improve phytochemical concentration in lettuce. Journal of the American Society for Horticultural Science. 2010. vol. 135. no. 3. pp. 223-229. doi: 10.21273/JASHS.135.3.223

16. Osman A.D., Eliseeva L.G., Zelenkov V.N., Latushkin V.V. et al. Nutritional value of microgreens and mature lettuce (Lactuca sativa) grown under phytotron of urban type (ISR 0.2). Proccedings of VSUET. 2020. vol. 2. pp. 55-60. doi: 10.20914/2310-1202-2020-2-55-60

17. Kou L., Luo Y., Yang T., Xiao Z. et al. Postharvest biology, quality and shelf life of buckwheat microgreens. LWT-Food Science and Technology. 2013. vol. 51. no. 1. pp. 73-78. doi: 10.1016/j.lwt.2012.11.017

18. Kou L., Yang T., Luo Y., Liu X. et al. Pre-harvest calcium application increases biomass and delays senescence of broccoli microgreens. Postharvest biology and technology. 2014. vol. 87. pp. 70-78. doi: 10.1016/j.postharvbio.2013.08.004

19. Chandra D., Kim J.G., Kim Y.P. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Horticulture, Environment, and Biotechnology. 2012. vol. 53. no. 1. pp. 32-40. doi: 10.1007/s13580-012-0075-6

20. Weber C.F. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Frontiers in nutrition. 2017. vol. 4. pp. 7. doi: 10.3389/fnut.2017.00007

21. Jones-Baumgardt C., Llewellyn D., Ying Q., Zheng Y. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience. 2019. vol. 54. no. 7. pp. 1168-1174. doi: 10.21273/HORTSCI13788-18

22. Ying Q., Kong Y., Jones-Baumgardt C., Zheng Y. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Scientia Horticulturae. 2020. vol. 259. pp. 108857. doi: 10.1016/j.scienta.2019.108857

23. Lenzi A., Orlandini A., Bulgari R., Ferrante A. et al. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods. 2019. vol. 8. no. 10. pp. 487. doi: 10.3390/foods8100487

24. Paradiso V.M., Castellino M., Renna M., Gattullo C.E. et al. Nutritional characterization and shelf-life of packaged microgreens. Food & function. 2018. vol. 9. no. 11. pp. 5629-5640. doi: 10.1039/C8FO01182F

25. Michell K.A., Isweiri H., Newman S.E., Bunning M. et al. Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. Journal of food science. 2020. vol. 85. no. 4. pp. 926-935. doi: 10.1111/1750-3841.15075

Для цитирования:

Othman A.J., Eliseeva L.G., Simina D.V. Microgreens: a newly merging product, aspects, prospectives, and disadvantages. Вестник Воронежского государственного университета инженерных технологий. 2021;83(1):102-107.

For citation:

Othman A.J., Eliseeva L.G., Simina D.V. Microgreens: a newly merging product, aspects, prospectives, and disadvantages. Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(1):102-107. (In Russ.)

Просмотров: 23

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)