Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

Comparative expression of recombinant phospholipase A2 in Komagataella phaffii depending on the modification of the alpha-factor signaling peptide

https://doi.org/10.20914/2310-1202-2021-1-263-269

Abstract

Currently, the Russian market of phospholipase A2 enzyme preparations is represented by commercial preparations of foreign manufacturers: Nagase (Japan) and Maxapal (the Netherlands). However, the growing demand and the need to reduce the cost of production of phospholipase A2 require the development of new super-producers of phospholipase A2. In this connection, the aim of the work is to compare the expression of recombinant phospholipase A2 in Komagataella phaffii depending on the modification of the alpha-factor signaling peptide. The object of the study is the recipient yeast strain Komagataella phaffii X-33. The studies were conducted in accordance with generally accepted norms and approaches. Phospholipase A2 genes from Streptomyces violaceoruber were used for this worK. The target sequences were synthesized in the company "Eurogen" (Russia) and cloned as part of the TE vector pUC57. In the course of the work, the genetic constructs pPICZaA-Pla2 and PPICZmf4iA-Pla2 containing the Streptomyces violaceoruber phospholipase A2 gene were assembled under the native signal a-MF and its modification mf4i. The transformation of the yeast Komagataella phaffii X-33 with the obtained genetic constructs was also carried out. As a result of the conducted studies, it was shown that on average, there were no significant differences in the level of expression and specific activity of recombinant phospholipase A2 in methylotrophic yeast K. Phaffii X-33 when using the native a-MF secretion signal and its modified version mf4i. However, the use of the secretion factor mf4i allows for higher production of phospholipase A2 in individual clones. The obtained data indicate the prospects of using the secretion factor mf4i to create super-producers of enzymes based on yeast K. Phaffii X-33.

About the Authors

D. S. Bytyak
Voronezh State University of Engineering Technologies
Russian Federation

master student, biochemistry and biotechnology department, Revolution Av., 19 Voronezh, 394036, Russia



Y. A. Gladchenko
Innovation Center Biryuch-New Technologies

genetic engineer, Center for Biotechnology, Belgorod Region, Krasnogvardeysky district, Malobykovo village, Belaya Vezha str., 1, 309927, Russia



A. V. Ryapolova
Voronezh State University of Engineering Technologies

student, medical biochemistry and microbiology department, Revolution Av., 19 Voronezh, 394036, Russia



O. S. Korneeva
Voronezh State University of Engineering Technologies

Dr. Sci. (Biol.), professor, biochemistry and biotechnology department, Revolution Av., 19 Voronezh, 394036, Russia



E. A. Motina
Voronezh State University of Engineering Technologies

Сand. Sci. (Engin.), biochemistry and biotechnology department, Revolution Av., 19, Voronezh, 394036, Russia



References

1. Dennis E.A., Cao J., Hsu V.I.I., Magrioti V. et al. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 2011. vol. 111. pp. 6130–6185. doi: 10.1021/cr200085w

2. Samy R.P., Gopalakrishnakone P., Stiles B.G., Girish K.S. et al. Snake venom phospholipases A(2): a novel tool against bacterial diseases. Curr Med Chem. 2012. vol. 19. pp. 6150–6162. doi: 10.2174/092986712804485791

3. Muller V.D., Russo R.R., Cintra A.C., Sartim M.A. et al. Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon. 2012. vol. 59. pp. 507–515. doi: 10.1016/j.toxicon.2011.05.021

4. Muller V.D., Soares R.O., dos Santos N.N., Trabuco A.C. et al. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope. PLoS One. 2014. vol. 9. no. 11. pp. e112351. doi: 10.1371/journal.pone.0112351

5. Russo R.R., M?ller V.D.M., Cintra A.C.O., Figueiredo L.T.M. et al. Phospholipase A2 crotoxin B isolated from the venom of Crotalus durissus terrificus exert antiviral effect against dengue virus and yellow fever virus through its catalytic activity. J Virol Antivir Res. 2014. vol. 3. pp. 1. doi: 10.1016/j.toxicon.2011.05.021

6. Castillo J.C., Vargas L.J., Segura C., Guti?rrez J.M. et al. In vitro antiplasmodial activity of phospholipases A2 and a phospholipase homologue isolated from the venom of the snake Bothrops asper. Toxins (Basel). 2012. vol. 4. pp. 1500–1516. doi: 10.3390/toxins4121500

7. Nunes D.C., Figueira M.M., Lopes D.S., De Souza D.L. et al. BnSP 7 toxin, a basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis. Parasitology. 2013. vol. 140. pp. 844–854. doi:10.1017/S0031182013000012

8. Silveira L.B., Marchi-Salvador D.P., Santos-Filho N.A., Silva F.P. et al. Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom. J Pharm Biomed Anal. 2013. vol. 73. pp. 35–43. doi: 10.1016/j.jpba.2012.04.008

9. Rodrigues R.S., Izidoro L.F., de Oliveira R.J., Sampaio S.V. et al. Snake venom phospholipases A2: a new class of antitumor agents. Protein Pept Lett. 2009. vol. 16. pp. 894–898. doi: 10.2174/092986609788923266

10. Borrelli G.M., Trono D. Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int. J.N. Sci. 2015. vol. 16. pp. 20774–20840. doi: 10.3390/ijms160920774

11. Murakami M., Sato H., Miki Y., Yamamoto K. et al. A new era of secreted phospholipase A2 (sPLA2). J Lipid Res. 2015. vol. 56. pp. 1248–1261. doi: 10.1194/jlr.R058123

12. Quach N.D., Arnold R.D., Cummings B.S. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol. 2014. vol. 90. pp. 338–348. doi: 10.1016/j.bcp.2014.05.022

13. Ahmad M., Hirtz M., Pitcher H., Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous production. Appl Microbiol Biotechnol. 2014. vol. 98. pp. 5301–5317. doi: 10.1007/s00253-014-5732-5

14. Kang Z., Huang H., Zhang Y., Du G. et al. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. World J Microbiol Biotechnol. 2017. vol. 33. no. 1. pp. 1-8. doi: 10.1007/s11274-016-2185-2

15. Liu A., Yu X.-W., Sha C., Xu Y. Streptomyces violaceoruber Phospholipase A2: expression in Pichia pastoris, properties, and application in oil degumming. Appl Biochem Biotechnol. 2015. vol. 175. no. 6. pp. 3195-3206. doi: 10.1007/s12010-015-1492-7

16. Takemori D., Yoshino K., Eba C., Nakano H. et al. Extracellular production of phospholipase A 2 from Streptomyces violaceoruber by recombinant Escherichia coli. Protein Expression and Purification. 2012. vol. 81. no. 2. pp. 145-150. doi: 10.1016/j.pep.2011.10.002

17. Yu X.W., Sun W.H., Wang Y.Z., Xu Y. Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects. Sci. Rep. 2017. vol. 7. no. 1. pp. 1-12. doi: 10.1038/s41598-017-16577-x

18. Codon Usage Database. URL: http://www.kazusa.or.jp/codon/index.html.

19. EasySelect Pichia Expression Kit. For Expression of Recombinant Proteins Using pPICZ and pPICZ? in Pichia pastoris. User manual. Invitrogen. 2010. 86 p.

20. Valli M., Tatto N.E., Peymann A., Gruber C. et al. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function. FEMS yeast research. 2016. vol. 16. no. 6. doi: 10.1093/femsyr/fow051


Review

For citations:


Bytyak D.S., Gladchenko Y.A., Ryapolova A.V., Korneeva O.S., Motina E.A. Comparative expression of recombinant phospholipase A2 in Komagataella phaffii depending on the modification of the alpha-factor signaling peptide. Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(1):263-269. (In Russ.) https://doi.org/10.20914/2310-1202-2021-1-263-269

Views: 489


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)