Biopolymers and its application as electroactive polymers
https://doi.org/10.20914/2310-1202-2021-1-270-277
Аннотация
Smart materials are a group of materials that exhibit the ability to change their composition or structure, their electrical and/or mechanical properties, or even their functions in response to an external stimulus such as heat, light, electricity, pressure, etc. Some of the advantages of these materials are: lightweight, flexibility, low cost of production, high energy density, fast response and compact size. One of the promises in the area of smart materials can be found in “smart polymer”. Polymers have many attractive characteristics, such as: lightweight, inexpensiveness, fractures tolerant, and pliable. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored according to the required needs. The capability of electroactive polymers (EAPs) to respond to electrical stimuli with a mechanical response, is attracting the attention of the scientific community from a wide range of disciplines. Biopolymers in recent decades have been studied as potential electroactive materials. These groups of polymers are extracted from a natural source; thus, they are eco-friendly, additionally they stand as a cheaper solution for the development of smart materials.The present manuscript will explore some of its applications as EAPs.
Об авторах
Rigel Antonio Olvera BernalРоссия
М. В. Успенская
Р. О. Олехнович
Россия
Список литературы
1. Jean-Mistral C., Basrour S., Chaillout J. J. Comparison of electroactive polymers for energy scavenging appli-cations. Smart Materials and Structures. 2010. vol. 19. no. 8. pp. 085012.
2. Romasanta L. J., López-Manchado M. A., Verdejo R. Increasing the performance of dielectric elastomer ac-tuators: A review from the materials perspective. Progress in Polymer Science. 2015. pp. 188–211. doi: 10.1016/j.progpolymsci.2015.08.002.
3. Lurie-Luke E. Product and technology innovation: What can biomimicry inspire? Biotechnology Advances. 2014. vol. 32. no. 8. pp. 1494–1505. doi: 10.1016/j.biotechadv.2014.10.002
4. Bar-Cohen Y. EAP from 1999 to 2020: highlights from chairing the EAPAD conference for 22 years. Electro-active Polymer Actuators and Devices (EAPAD) XXII. International Society for Optics and Photonics. 2020. vol. 11375. pp. 1137502. doi: 10.1117/12.2559735
5. Augustine R., Rajakumari R., Cvelbar U., Mozetic M. et al. Biopolymers for health, food, and cosmetic ap-plications. Handbook of Biopolymer‐Based Materials: From Blends and Composites to Gels and Complex Networks. 2013. pp. 801-849.
6. Balaji A.B., Pakalapati H., Khalid M., Walvekar R. et al. Natural and synthetic biocompatible and biode-gradable polymers. Navinchandra Gopal Shimpi. Biodegradable and biocompatible polymer composites. 2018. pp. 3-32.
7. Wankhade V. Animal-derived biopolymers in food and biomedical technology. Biopolymer-Based Formula-tions. 2020. pp. 139–152. doi: 10.1016/b978–0–12–816897–4.00006–0
8. Ahmed S., Kanchi S., Kumar G. Handbook of Biopolymers: Advances and Multifaceted Applications. CRC Press, 2018.
9. Sohn J.W., Kim G.W., Choi S.B. A state-of-the-art review on robots and medical devices using smart fluids and shape memory alloys. Applied Sciences. 2018. vol. 8. no. 10. pp. 1928. doi: 10.3390/app8101928
10. Choi K., Gao C.Y., Nam J. Do, Choi H.J. Cellulose-based smart fluids under applied electric fields. Materials. 2017. vol. 10. no. 9. pp. 1060. doi: 10.3390/ma10091060
11. Choi K., Nam J. Do, Kwon S.H., Choi H.J. et al. Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers. 2019. vol. 11. no. 12. pp. 2119. doi: 10.3390/polym11122119
12. Kuznetsov N.M., Zagoskin Y.D., Vdovichenko A.Y., Bakirov A.V. et al. Enhanced electrorheological activity of porous chitosan particles. Carbohydrate Polymers. 2021. vol. 256. pp. 117530. doi: 10.1016/j.carbpol.2020.117530
13. Altınkaya E., Seki Y., Çetin L., Gürses B.O. et al. Characterization and analysis of motion mechanism of electroactive chitosan-based actuator. Carbohydrate polymers. 2018. vol. 181. pp. 404-411. doi: 10.1016/j.carbpol.2017.08.113
14. Akar E., Sever K. Electromechanical characterization of multilayer graphene-reinforced cellulose composite containing 1-ethyl-3-methylimidazolium diethylphosphonate ionic liquid. Science and Engineering of Composite Mate-rials. 2017. vol. 24. no. 2. pp. 289-295. doi: 10.1515/secm 2015–0038
15. Palza H., Zapata P. A., Angulo-Pineda C. Electroactive smart polymers for biomedical applications. Materials. 2019. vol. 12. no. 2. pp. 277. doi: 10.3390/ma12020277
16. Jayaramudu T., Ko H., Zhai L., Li Y. et al. Preparation and characterization of hydrogels from polyvinyl al-cohol and cellulose and their electroactive behavior. Soft Materials. 2017. vol. 15. no. 1. pp. 64-72. doi: 10.1080/1539445X.2016.1246458
17. Zolfagharian A., Kaynak A., Khoo S.Y., Kouzani A.Z. Polyelectrolyte soft actuators: 3D printed chitosan and cast gelatin. 3D Printing and Additive Manufacturing. 2018. vol. 5. no. 2. pp. 138-150. doi: 10.1089/3dp.2017.0054
18. Rotjanasuworapong K., Thummarungsan N., Lerdwijitjarud W., Sirivat A. Facile formation of agarose hy-drogel and electromechanical responses as electro-responsive hydrogel materials in actuator applications. Carbohy-drate Polymers. 2020. vol. 247. pp. 116709. doi: 10.1016/j.carbpol.2020.116709
19. Kunchornsup W., Sirivat A. Physically cross-linked cellulosic gel via 1-butyl-3-methylimidazolium chloride ionic liquid and its electromechanical responses. Sensors and Actuators A: Physical. 2012. vol. 175. pp. 155-164. doi: 10.1016/j.sna.2011.12.045.
20. Petcharoen K., Sirivat A. Electrostrictive properties of thermoplastic polyurethane elastomer: Effects of ure-thane type and soft–hard segment composition. Current Applied Physics. 2013. vol. 13. no. 6. pp. 1119-1127. doi: 10.1016/j.cap.2013.03.005.
21. Wang Y., Lin M., Dai W., Zhou Y. et al. Enhancement of Fe (III) to electro-response of starch hydrogel. Col-loid and Polymer Science. 2020. vol. 298. no. 11. pp. 1533-1541. doi: 10.1007/s00396–020–04736 y
Рецензия
Для цитирования:
Olvera Bernal R.A., Успенская М.В., Олехнович Р.О. Biopolymers and its application as electroactive polymers. Вестник Воронежского государственного университета инженерных технологий. 2021;83(1):270-277. https://doi.org/10.20914/2310-1202-2021-1-270-277
For citation:
Olvera Bernal R.A., Uspenskaya M.V., Olekhnovich R.O. Biopolymers and its application as electroactive polymers. Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(1):270-277. https://doi.org/10.20914/2310-1202-2021-1-270-277