Preview

Вестник Воронежского государственного университета инженерных технологий

Расширенный поиск

Simulation of municipal solid waste gasification in fixed bed reactor

https://doi.org/10.20914/2310-1202-2022-2-221-227

Полный текст:

Аннотация

The objective of this work is simulating municipal solid waste gasification in fixed bed reactor. A comprehensive process model developed to simulate municipal solid waste (MSW) gasification in fixed bed reactor using an Aspen Plus  simulation .To predict and analyze the  municipal  solid  waste  pyrolysis and gasification process in an updraft fixed bed more veritably and appropriately, numerical modeling based on Gibbs energy minimization was executed using the Aspen plus software v(9). Rstoic is a block that can be used to simulate a reactor with the unknown or unimportant reaction kinetic  that  will  describe  drying  section(moisture evaporated).The Ryield model was  describe the pyrolysis section, while the Rgibbs model was used  for  gasification section individually .The  proposed  model is used to forecast and analyze target performance  parameter including syngas composition, lower heating value and carbon conversion rate under different conditions of  gasification temperature , and ratios. The results indicate that  is a good agreement between data and simulated data obtained using this model .The predicted  optimum  gasification temperature is about approximately 750°C, and the best ratio  of air equivalent ratio is around 0.2 and feed rate 200 kg /hr.

Об авторах

Elrafie Abd Allah
http://www.mahdi.edu.sd
University of El Imam El Mahdi
Судан


Yasir Mohamed El Hassan
Sudan University of El Imam El Mahdi Chemical engineering department Professor
Россия

Chemical engineering department

University of EL Imam El Mahdi

Professor



A. Elhameed Kasif
http://www.mahdi.edu.sd
University of El Imam El Mahdi
Судан


Salah Aldeen Mohamed
http://www.mahdi.edu.sd
University of El Imam El Mahdi
Судан


Список литературы

1. Bridgewater T. Review biomass for energy. Journal of Food Agaric Sciences. 2017.

2. Calaminus B., Stahlberg R. Continuous in-line gasification/vitrification process for thermal waste treatment: process technology and current status of projects. Waste Management. 1998. vol. 18. no. 6-8. pp. 547-556.

3. Nikoo M.B., Mahinpey N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and bioenergy. 2008. vol. 32. no. 12. pp. 1245-1254.

4. Zheng LG, Furimsky E. ASPEN simulation of cogeneration plants. Energy Convers Manage, 2003.

5. Jannelli E, Minutillo M. Simulation of the flue gas cleaning system of an RDF incineration power plant. Waste Manage, 2007.

6. Zhao VII, Hao W, Xu ZH. Conceptual design and simulation study of a co-gasification technology. Energy Converse Manage, 2006.

7. Porteous A. Energy from waste incineration – A state of the art emissions review with an emphasis on public acceptability. Appl Energy, 2001.

8. Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass and bioenergy. 2000. vol. 18. no. 6. pp. 489-497.

9. Niue et al. Straw gasification in an up-draft gasifier, 2001.

10. Dogru M., Howarth C.R., Akay G., Keskinler B. et al. Gasification of hazelnut shells in a downdraft gasifier. Energy. 2002. vol. 27. no. 5. pp. 415-427. doi: 10.1016/S0360-5442(01)00094-9

11. Chen C., Jin Y.Q., Yan J.H., Chi Y. et al. Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel. 2013. vol. 103. pp. 58-63. doi: 10.1016/j.fuel.2011.06.075

12. Moshi R.E., Jande Y.A.C., Kivevele T.T., Kim W.S. Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020. pp. 1-13. doi: 10.1080/15567036.2020.1806404

13. Begum S., Rasul M.G., Akbar D. A numerical investigation of municipal solid waste gasification using aspen plus. Procedia engineering. 2014. vol. 90. pp. 710-717. doi: 10.1016/j.proeng.2014.11.800

14. Pandey D.S., Das S., Pan I., Leahy J.J. et al. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste management. 2016. vol. 58. pp. 202-213.

15. Oliveira M., Ramos A., Monteiro E., Rouboa A. Modeling and simulation of a fixed bed gasification process for thermal treatment of municipal solid waste and agricultural residues. Energy Reports. 2021. vol. 7. pp. 256-269.

16. Deng N., Li D., Zhang Q., Zhang A. et al. Simulation analysis of municipal solid waste pyrolysis and gasification based on Aspen plus. Frontiers in Energy. 2019. vol. 13. no. 1. pp. 64-70. doi: 10.1007/s11708-017-0481-7

17. Sun R., Ismail T.M., Ren X., Abd El-Salam M. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Waste management. 2015. vol. 39. pp. 166-178. doi: 10.1016/j.wasman.2015.02.018

18. Hlaba A., Rabiu A., Osibote O. A. Process Simulation of Municipal Solid Waste Derived Pellet Gasification for Fuel Production. Proceedings of the 7th International Conference on Informatics, Environment, Energy and Applications. 2018. pp. 59-64. doi: 10.1145/3208854.3208869

19. Niu M., Huang Y., Jin B., Wang X. Simulation of syngas production from municipal solid waste gasification in a bubbling fluidized bed using Aspen Plus. Industrial & engineering chemistry research. 2013. vol. 52. no. 42. pp. 14768-14775. doi: 10.1021/ie400026b

20. Chanthakett A., Arif M.T., Khan M.M.K., Oo A.M. Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management. 2021. vol. 291. pp. 112661.


Рецензия

Для цитирования:


., ., ., . . Вестник Воронежского государственного университета инженерных технологий. 2022;84(2):221-227. https://doi.org/10.20914/2310-1202-2022-2-221-227

For citation:


Abd Allah E.A., Mohamed El Hassan Y.A., Kasif A.M., Mohamed S.A. Simulation of municipal solid waste gasification in fixed bed reactor. Proceedings of the Voronezh State University of Engineering Technologies. 2022;84(2):221-227. https://doi.org/10.20914/2310-1202-2022-2-221-227

Просмотров: 211


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)