Непредельные фталаты из отходов производства как основа для синтеза пластификатора-антипирена
https://doi.org/10.20914/2310-1202-2022-1-202-207
Аннотация
Оценена возможность использования непредельных фталатов, полученных этерификацией фталевого ангидрида кубовыми остатками ректификации бутиловых спиртов, в качестве основы для синтеза бромсодержащего пластификатора-антипирена. Отмечена нестабильность содержания непредельных эфиров фталевой кислоты в исследуемом объекте с наиболее вероятным интервалом колебаний по йодному числу, в пределах от 24,4 до 44,4. Установлена прямая зависимость указанных пределов варьирования от содержания в кубовом остатке ректификации бутанола 2-этилгексен-3-ол-1 в количестве 9,0-17,5 % и 2-этилгексен-2-ол в количестве 35-43 %. Найдено соотношение непредельных эфиров 2-этилгексил-2-этилгексен-3-фталата и 2-этилгексил-2-этилгексен-2-фталата в непредельном пластификаторе - 1:2÷5. Показано, что при дефиците в производстве бромированного пластификатора с низким содержанием брома его необходимое количество можно получить разбавлением бромированного пластификатора с высоким содержанием брома. В качестве разбавителей предложены диоктилфталат и исследуемый непредельный пластификатор. Отмечено, что при неполном бромировании непредельной основы ненасыщенные эфиры не оказывает отрицательного влияния на качество композиций, делают бромсодержащую систему более реакционноспособной, что приводит к дополнительной сшивке молекул полимеров и повышению прочности композиции. Показано, что модификация непредельного пластификатора бромированием позволит получить тройной эффект ингибирования процесса горения за счет элиминирования бромистого водорода из бромированных эфиров, увеличения продолжительности его элиминирования и способности непредельных эфиров реагировать с активными радикалами, выделяющимися при термораспаде и горении полимерных композиций.
Об авторе
Р. Н. ПлотниковаРоссия
к.х.н., доцент, кафедра промышленной экологии, оборудования химических и нефтехимических производств, пр-т Революции, 19, г. Воронеж, 394036, Россия
Список литературы
1. Леванова С.В., Красных Е.Л., Моисеева С.В., Сафронов С.П. и др. Научные и технологические особенности синтеза новых сложноэфирных пластификаторов на основе возобновляемого сырья // Известия высших учебных заведений. 2021. Т. 64. № 6. С. 69–75. doi: 10.6060/ivkkt.20216406.6369
2. Tsai Y.T., Lin M.-m., Lee M.–J. Kinetics of heterogeneous esterification of glutaric acid with methanol over Amberlyst 35 // J. Taiwan Inst. Chem. Eng. 2011. V. 42. № 2. P. 271–277. doi: 10.1016/j.jtice.2010.07.010
3. ТУ 38.102171–85. Пластификатор ДЭГФ.
4. Искендерова С.А., Садиева Н.Ф., Эфендиева Л.М., Асадова Ш.Н. и др. Новые пластификаторы для эфиров целлюлозы // Пластические массы. 2020. № 1–2. С. 15–16.
5. Shelke M.E. Synthesis and evaluation of newly1-substituted-(2H)-2-thio-4-(3-substitutedthiocarbamido-1-yl)-6-(2-imino-4-thio-5-substitutedbiureto-1-yl) 1, 2-dihydro-S-triazines as potent antimicrobial agents // GSC Biological and Pharmaceutical Sciences. 2020. V. 13. №. 3. P. 109-112. doi: 10.30574/gscbps.2020.13.3.0245
6. Плотникова Р.Н., Корчагин В.И., Попова Л.В. Бромирование фталатсодержащих систем, полученных из отходов производства // Известия высших учебных заведений. Химия и химическая технология. 2021. V. 64. №. 11. P. 112-116. doi: 10.6060/ivkkt.20216411.6429
7. Miyake Y. et al. Simultaneous determination of brominated and phosphate flame retardants in flame-retarded polyester curtains by a novel extraction method // Science of the Total Environment. 2017. № 601–602. P. 1333–1339.
8. Ахраров Б.Б., Мухамедгалиев Б.А. Исследование огнезащитных характеристик синтезированных фосфорсодержащих полимерных антипиренов // Пластические массы. 2016. № 11–12. С. 37–38. doi: 10.35164/0554–2901–2016–11–12–37–38
9. Алимова А.У., Дудеров Г.Н., Орлова А.М. Снижение горючести целлюлозосодержащих материалов // Вестник МГСУ. 2011. №. 1-2. C. 326-330.
10. Плотникова Р.Н. Исследование свойств бромированной фталатсодержащей системы и определение областей ее применения // Вестник Воронежского государственного университета инженерных технологий. 2021. Т. 83. № 1. С. 290–296. doi: 10.20914/2310–1202–2021–1–290–296
11. Teptereva G.A. и др. Возобновляемые природные сырьевые ресурсы, строение, свойства, перспективы применения // Известия высших учебных заведений. 2021. Т. 64. №. 9. С. 4-121. doi: 10.6060/ivkkt.20216409.6465
12. Ruasse M.F., Zhang B.L. The nucleophilic contribution of the solvent in olefin bromination. I. Steric inhibition to nucleophilic solvation in alkene bromination via brominium ions // The Journal of Organic Chemistry. 1984. V. 49. №. 17. P. 3207-3210.
13. He W., Song P., Yu B., Fang Z. et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants // Progress in Materials Science. 2020. V. 114. P. 100687. doi: 10.1016/j.pmatsci.2020.100687
14. Sushkova S.V., Levanova S.V., Glazko I.L. Identification and quantitative determination of citric acid esters // ChemChemTech. 2019. V. 62. № 10. P. 110–117. doi: 10.6060/ivkkt.20196210.6036
15. Lee B., Yoo J., Kang K. Predicting the chemical reactivity of organic materials using a machine-learning approach // Chemical science. 2020. V. 11. №. 30. P. 7813-7822. doi: 10.1039/d0sc01328e
16. Ахраров Б.Б., Мухамедгалиев Б.А. Разработка огнезащитных составов на основе отходов химической промышленности // Пластические массы. 2016. №. 7-8. С. 25-27
17. Ушков В.А., Лалаян В.М., Невзоров Д.И., Ломакин С.М. О влиянии фталатных и фосфатных пластификаторов на воспламеняемость и дымообразующую способность полимерных композиционных материалов // Пожаровзрывобезопасность. 2013. Т. 22. №. 10. С. 25-33.
18. Paul D.R., Baknell K.B. Polymer mixtures. Volume I: Systematics. SPb.: Scientific foundations and technologies. 2009. 618 p.
19. Swoboda B., Buonomo S., Leroy E., Lopez Cuesta J.M. Reaction to fire of recycled poly(ethyleneterephthalate)/polycarbonate blends // Polymer Degradation and Stability. 2007. V. 92. № 12. P. 2247–2256. doi: 10.1016/j.polymdegradstab.2007.01.038
20. Hong I. – K., Lee S. Properties of ultrasound-assisted blends of poly(ethylene terephthalate) with polycarbonate // J. Ind. Eng. Chem. 2013. V. 19. № 1. P. 87–93. doi: 10.1016/j.jiec.2012.07.006
Рецензия
Для цитирования:
Плотникова Р.Н. Непредельные фталаты из отходов производства как основа для синтеза пластификатора-антипирена. Вестник Воронежского государственного университета инженерных технологий. 2022;84(1):202-207. https://doi.org/10.20914/2310-1202-2022-1-202-207
For citation:
Plotnikova R.N. Disadvantageous phthalates from production waste as the basis for the synthesis of plasticizer-antipyrin. Proceedings of the Voronezh State University of Engineering Technologies. 2022;84(1):202-207. (In Russ.) https://doi.org/10.20914/2310-1202-2022-1-202-207