Preview

Вестник Воронежского государственного университета инженерных технологий

Расширенный поиск

Биопластик: свойства, возобновляемые ресурсы биомассы, синтез и применение

https://doi.org/10.20914/2310-1202-2023-3-199-212

Аннотация

Современные тенденции в технологии упаковки пищевых продуктов обуславливают необходимость разработки новых упаковочных материалов с целью продления срока хранения продуктов питания и уменьшения их порчи. Для сохранения пищевого продукта, конструкционный материал упаковки играет ключевую роль. В развивающейся области технологии упаковки пищевых продуктов, использование биобазных пластиков для упаковки пищевых продуктов показало сравнительное преимущество. На данный момент, биопластики показали измеримые преимущества и получают все больше внимания со стороны деловых организаций, политических деятелей, научных сообществ, и в целом общественности. Это стало результатом поиска новых марок пластиковых профилей. Кроме того, воздействие на окружающую среду (экологические проблемы) конвективных материалов, истощение природных ресурсов, в частности, нефтехимических, и озабоченность потребителей вызвали необходимость в альтернативных средствах упаковки пищевых продуктов на биооснове. Поэтому целью данного исследования был обзор свойств упаковочных материалов для пищевых продуктов, таких как тепловые, механические, барьерные, поверхностные, антимикробные, оптические и экологические, а также их тип синтеза и применение. Были разработаны компоненты целлюлозы и крахмала из распространенных сельскохозяйственных отходов для синтеза биополимеров. Кроме того, различные виды микроводорослей были обоснованы в производстве пластмасс на биооснове. В данной обзорной статье также приведены примеры устойчивых наполнителей и армирующих материалов, используемых в индустрии пищевой упаковки. Таким образом, данная обзорная работа способствует раскрытию всего объема научных знаний о пластиках на биооснове, используемых для упаковки пищевых продуктов, и помогает получить важные результаты для дальнейших исследований.

Об авторах

И. И. Мелессе
Российский биотехнологический университет
Россия

аспирант, кафедра технологий и экспертизы упаковки промышленного дизайна, 125080, Москва, Россия



Ю. А. Филинская
Российский биотехнологический университет

д.х.н., профессор, кафедра технологий и экспертизы упаковки промышленного дизайна, 125080, Москва, Россия



И. А. Кирш
Российский биотехнологический университет


Али Я. Альхаир
Российский биотехнологический университет


О. А. Банникова
Российский биотехнологический университет


Список литературы

1. Hong L.G., Yuhana N.Y., Zawawi E.Z.E. Review of bioplastics as food packaging materials. AIMS Materials Science. 2021. vol. 8. no. 2. pp. 166-184. doi: 10.3934/matersci.2021012

2. Ayorova Ya.O., Voronina M.S. processing food waste to create biodegradable packaging. News of the Far Eastern Federal University. Economics and Management. 2021. vol. 100. no. 4. pp. 87–97. (in Russian).

3. Chan J.X., Wong J.F., Hassan A., Zakaria Z. Bioplastics from agricultural waste, Biopolymers and Biocomposites from Agro-Waste for Packaging Applications. Food packaging. 2021. pp. 223–263.

4. Jabeen N., Majid I., Nayik G. A. Bioplastics and food packaging: A review. Cogent Food & Agriculture. 2015. no. 1. no. 1. pp. 1117749.

5. Zhang B., Qiao D., Zhao S., Lin Q. et al. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends in Food Science & Technology. 2021. vol. 114. pp. 212-231. doi: 10.1016/j.tifs.2021.05.033

6. Venkatesh S., Mahboob S., Govindarajan M., Al-Ghanim K.A. et al. Microbial degradation of plastics: Sustainable approach to tackling environmental threats facing big cities of the future. Journal of King Saud University-Science. 2021. vol. 33. pp. 101362. doi: 10.1016/j.jksus.2021.101362

7. Tsang Y.F., Kumar V., Samadar P., Yang Y. et al. Production of bioplastic through food waste valorization. Environment international. 2019. vol. 127. pp. 625-644. doi: 10.1016/j.envint.2019.03.076

8. Kudryakova G.Kh., Kuznetsova L.S., Shevchenko E.G., Ivanova T.V. Biodegradable packaging in the food industry. Food industry. 2006. no. 7. (in Russian).

9. Nazrin A. et al. Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly (lactic acid)(PLA) blend bionanocomposites. Nanotechnology Reviews. 2021. vol. 10. no. 1. pp. 431-442. doi: 10.1515/ntrev-2021-0033

10. Minh N.P., Pham T., van Hung L., Thuan N.T. et al. Effectiveness of Pouzolzia zeylanica, Curcuma longa, Piper nigrum, Capsicum annum to stability of dried salted tilapia during storage. Journal of Pharmaceutical Sciences and Research. 2019. vol. 11.pp. 1469–1473.

11. Briassoulis D., Pikasi A., Hiskakis M. Recirculation potential of post-consumer/industrial bio-based plastics through mechanical recycling-Techno-economic sustainability criteria and indicators. Polymer Degradation and Stability. 2021. vol. 183. pp. 109217. doi: 10.1016/j.polymdegradstab.2020.109217

12. Tyuftin A.A., Kerry J.P. Review of surface treatment methods for polyamide films for potential application as smart packaging materials: surface structure, antimicrobial and spectral properties. Food Packaging and Shelf life. 2020. vol. 24. pp. 100475. doi: 10.1016/j.fpsl.2020.100475

13. Sionkowska A., Płanecka A. Surface properties of thin films based on the mixtures of chitosan and silk fibroin. Journal of Molecular Liquids. 2013. vol. 186. pp. 157-162. doi: 10.1016/j.molliq.2013.07.008

14. Orlova E.S., Al-Suhaimi S.A., Rebezov M.B. Assessment of antioxidant and antimicrobial activity of plant bioactive compounds as natural preservatives. Agrarian Science. 2023. vol. 1. no. 8. pp. 143-150. (in Russian).

15. Omerović N., Djisalov M., Živojević K., Mladenović M. et al. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety. 2021. vol. 20. no. 3. pp. 2428-2454. doi: 10.1111/1541-4337.12727

16. Moshood T.D. et al. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry. 2022. vol. 5. pp. 100273. doi: 10.1016/j.crgsc.2022.100273

17. Al-Jahwari F.S., Pervez T. The Potential of Environmental-Friendly Biopolymers as an Alternative to Conventional Petroleum-Based Polymers. Encyclopedia of Renewable and Sustainable Materials. 2020. vol. 5. pp. 200–206. doi: 10.1016/j.crgsc.2022.100273

18. Nduko J.M., Taguchi S. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources. Frontiers in Bioengineering and Biotechnology. 2021. V. 8. P. 618077. doi: 10.3389/fbioe.2020.618077

19. Cao L., Gong Z., Xu C., Chen Y. Mechanical strong and recyclable rubber nanocomposites with sustainable cellulose nanocrystals and interfacial exchangeable bonds. ACS Sustainable Chemistry & Engineering. 2021. vol. 9. no. 28. pp. 9409-9417.

20. Li C., Ju B., Zhang S. Construction of a new green vitrimer material: introducing dynamic covalent bond into carboxymethyl cellulose. Cellulose. 2021. vol. 28. pp. 2879-2888.

21. Mukherjee S., Mukherjee G. Bacterial cellulose production from industrial waste and its applications. Plant Cell Biotechnol. Mol. Biol. 2021. vol. 22. pp. 104–113.

22. Pinto L., Bonifacio M.A., de Giglio E., Santovito E. et al. Biopolymer hybrid materials: Development, characterization, and food packaging applications. 2021. vol. 28. pp. 100676. doi: 10.1016/j.fpsl.2021.100676

23. Shafqat A., Tahir A., Khan W.U., Mahmood A. et al. Production and characterization of rice starch and corn starch based biodegradable bioplastic using various plasticizers and natural reinforcing fillers. Cellulose Chemistry and Technology. 2021. vol. 55. pp. 867-881.

24. Shaghaleh H., Xu X., Wang S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances. 2018. vol. 8. no. 2. pp. 825-842. doi: 10.1039/C7RA11157F

25. Vorawongsagul S., Pratumpong P., Pechyen C. Preparation and foaming behavior of poly (lactic acid)/poly (butylene succinate)/cellulose fiber composite for hot cups packaging application. Food Packaging and Shelf Life. 2021. vol. 27. pp. 100608. doi: 10.1016/j.fpsl.2020.100608

26. Zahiri Oghani F., Tahvildari K., Nozari M. Novel antibacterial food packaging based on chitosan loaded ZnO nano particles prepared by green synthesis from Nettle leaf extract. Journal of Inorganic and Organometallic Polymers and Materials. 2021. vol. 31. pp. 43-54.

27. Yotprayoonsak P., Virtanen J., Kangas V., Promarak V. Facile fabrication of flexible and conductive cellulose paper from aqueous carbon nanotube/hemicellulose compound. Synthetic Metals. 2021. vol. 271. pp. 116646. doi: 10.1016/j.synthmet.2020.116646

28. Liebeck B.M., Hidalgo N., Roth G., Popescu C. et al. Synthesis and characterization of methyl cellulose/keratin hydrolysate composite membranes. Polymers. 2017. vol. 9. no. 3. pp. 91. doi: 10.3390/polym9030091

29. Reichert C.L., Bugnicourt E., Coltelli M.B., Cinelli P. et al. Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers. 2020. vol. 12. no. 7. pp. 1558. doi: 10.3390/polym12071558

30. Lackner M., Ivanič F., Kováčová M., Chodák I. Mechanical properties and structure of mixtures of poly(butylene-adipate-co-terephthalate) (PBAT) with thermoplastic starch (TPS). International Journal of Biobased Plastics. 2021. vol. 3. no. 1. pp. 126-138.

31. Madadi R., Maljaee H., Serafim L.S., Ventura S.P. Microalgae as contributors to produce biopolymers. Marine Drugs. 2021. vol. 19. no. 8. pp. 466. doi: 10.3390/md19080466

32. Onen Cinar S., Chong Z.K., Kucuker M.A., Wieczorek N. et al. Bioplastic production from microalgae: a review. International journal of environmental research and public health. 2020. vol. 17. №. 11. pp. 3842.

33. Sunday N.F. Microplastics: Holistic overview of source, identification, interaction, health and environmental implications and strategies of abatement. Acta Chemica Malaysia. 2020. vol. 5. no. 1. pp. 18-23.

34. Gallego R., Bueno M., Chourio A.M., Ibáñez E. et al. Use of high and ultra-high pressure based-processes for the effective recovery of bioactive compounds from Nannochloropsis oceanica microalgae. The Journal of Supercritical Fluids. 2021. vol. 167. pp. 105039. doi: 10.1016/j.supflu.2020.105039

35. Sánchez-Bayo A., Rodríguez R., Morales V., Nasirian N. et al. Hydrothermal liquefaction of microalga using metal oxide catalyst. Processes. 2019. vol. 8. no. 1. pp. 15.

36. Alshehri W.A., Khalel A., Elbanna K., Ahmad I. et al. Bio-plastic Films Production from Feather Waste Degradation by Keratinolytic Bacteria Bacillus cereus. J Pure Appl Microbiol. 2021. The Author (s) 2021. Open Access. This article is distributed under the terms of the Creative Commons Attribution. 2021. vol. 4.

37. Ng J.S., Kiew P.L., Lam M.K., Yeoh W.M. et al. Preliminary evaluation of the properties and biodegradability of glycerol-and sorbitol-plasticized potato-based bioplastics. International Journal of Environmental Science and Technology. 2022. pp. 1-10.

38. Soares R.M.D., Siqueira N.M., Prabhakaram M.P., Ramakrishna S. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C. 2018. vol. 92. pp. 969-982. doi: 10.1016/j.msec.2018.08.004

39. Li M., Ma Y., Zhang X., Zhang L. et al. Tailor‐Made Polyhydroxyalkanoates by Reconstructing Pseudomonas Entomophila. Advanced Materials. 2021. vol. 33. no. 41. pp. 2102766. doi: 10.1002/adma.202102766

40. Xie Y., Niu,X., Yang J., Fan R. et al. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. International Journal of Biological Macromolecules. 2020. vol. 150. pp. 480-491. doi: 10.1016/j.ijbiomac.2020.01.291

41. Melesse E.Y., Bedru T.K., Meshesha B.T. Production and Characterization of Pulp from Banana Pseudo Stem for Paper Making Via Soda Anthraquinone Pulping Process. International Journal of Engineering Research in Africa. 2022. vol. 58. pp. 63-76. doi: 10.4028/www.scientific.net/JERA.58.63

42. Loiacono S., Crini G., Martel B., Chanet G. et al. Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hemp‐based felt. II. Chemical modification. Journal of applied polymer science. 2017. vol. 134. no. 32. pp. 45138. doi: 10.1002/app.45138

43. Pallem C. Utilization of wheat straw for the production of L-asparaginase in solid-state fermentation. J. Exp. Biol. Agric. Sci. 2019. vol. 7. no. 1. pp. 51-56.

44. Maraveas C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers. 2020. vol. 12. no. 5. pp. 1127. doi: 10.3390/polym12051127

45. Santana R.F., Bonomo R.C.F., Gandolfi O.R.R., Rodrigues L.B. et al. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of food science and technology. 2018. vol. 55. pp. 278-286.

46. Ramadhan M.O., Handayani M.N. The potential of food waste as bioplastic material to promote environmental sustainability: A review. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020. vol. 980. no. 1. pp. 012082. doi: 10.1088/1757-899X/980/1/012082

47. Luchese C.L., Sperotto N., Spada J.C., Tessaro I.C. Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. International journal of biological macromolecules. 2017. vol. 104. pp. 11-18. doi: 10.1016/j.ijbiomac.2017.05.149

48. Bárcena A., Graciano C., Luca T., Guiamet J.J. et al. Shade cloths and polyethylene covers have opposite effects on tipburn development in greenhouse grown lettuce. Scientia Horticulturae. 2019. vol. 249. pp. 93-99. doi: 10.1016/j.scienta.2019.01.023

49. Coppola G., Gaudio M.T., Lopresto C.G., Calabro V. et al. Bioplastic from renewable biomass: a facile solution for a greener environment. Earth systems and environment. 2021. vol. 5. pp. 231-251.

50. Maraveas C. Environmental sustainability of greenhouse covering materials. Sustainability. 2019. vol. 11. no. 21. pp. 6129.

51. Baxevanou C., Fidaros D., Bartzanas T., Kittas C. Yearly numerical evaluation of greenhouse cover materials. Computers and electronics in agriculture. 2018. vol. 149. pp. 54-70. doi: 10.1016/j.compag.2017.12.006


Рецензия

Для цитирования:


Мелессе И.И., Филинская Ю.А., Кирш И.А., Альхаир А.Я., Банникова О.А. Биопластик: свойства, возобновляемые ресурсы биомассы, синтез и применение. Вестник Воронежского государственного университета инженерных технологий. 2023;85(3):199-212. https://doi.org/10.20914/2310-1202-2023-3-199-212

For citation:


Melesse E.Y., Filinskaya Y.A., Kirsh I.A., Alkhair A.Y., Bannikova O.A. Food packaging Bio-based plastics: Properties, Renewable Biomass resources, Synthesis, and Applications. Proceedings of the Voronezh State University of Engineering Technologies. 2023;85(3):199-212. https://doi.org/10.20914/2310-1202-2023-3-199-212

Просмотров: 404


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)