1. Dayan F.E. Current status and future prospects in herbicide discovery. Plants. 2019. vol. 8.no. 9. pp. 341. https://doi.org/10.3390/plants8090341
2. Pereira S.P., Santos S.M., Fernandes M.A., Deus C.M. et al. Improving pollutants environmental risk assessment using a multi model toxicity determination with in vitro, bacterial, animal and plant model systems: The case of the herbicide alachlor. Environmental Pollution. 2021. vol. 286. pp. 117239. https://doi.org/10.1016/j.envpol.2021.117239
3. Bakaeva M., Chetverikov S., Timergalin M., Feoktistova A. et al. PGP-Bacterium Pseudomonas protegens improves bread wheat growth and mitigates herbicide and drought stress. Plants. 2022. vol. 11. no. 23. pp. 3289. https://doi.org/10.3390/plants11233289
4. Zhang Y., Hu Y., An N., Jiang D. et al. Short-term response of soil enzyme activities and bacterial communities in black soil to a herbicide mixture: Atrazine and Acetochlor. Applied Soil Ecology. 2023. vol. 181. no 1. pp. 104652. https://doi.org/10.1016/j.apsoil.2022.104652
5. Etesami H., Adl S. M. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation. 2020. pp. 147-203. https://doi.org/10.1007/978-981-15-2576-6_9
6. Basu A., Prasad P., Das S.N., Kalam S. et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability. 2021. vol. 13. no 3. pp. 1140. https://doi.org/10.3390/su13031140
7. Santoyo G., Urtis-Flores C.A., Loeza-Lara P.D., Orozco-Mosqueda M.D.C. et al. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology. 2021. vol. 10. no 6. pp. 475. https://doi.org/10.3390/biology10060475
8. Ha-Tran D.M., Nguyen T.T.M., Hung S.H., Huang E. et al. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences. 2021. vol. 22. no 6. pp. 3154. https://doi.org/10.3390/ijms22063154
9. Munir N., Hanif M., Abideen Z., Sohail M. et al. Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy. 2022. vol. 12. no 9. pp. 2069. https://doi.org/10.3390/agronomy12092069
10. Jiang Z., Jiang D., Zhou Q., Zheng Z. et al. Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid producing strain Pseudomonas chlororaphis PAS18. Ecotoxicology and Environmental Safety. 2020. vol. 202. pp. 110854. https://doi.org/10.1016/j.ecoenv.2020.110854
11. Motamedi M., Zahedi M., Karimmojeni H., Baldwin T.C. et al. Rhizosphere-associated bacteria as biofertilizers in herbicide-treated alfalfa (Medicago sativa). Journal of Soil Science and Plant Nutrition. 2023. vol. 23. pp. 2585-2598. https://doi.org/10.1007/s42729-023-01214-6
12. Sarvani B., Reddy R.S., Prasad J.S. Characterization of plant growth promoting rhizobacteria for compatibility with commonly used Agrochemicals. Ecology, Environment and Conservation. 2021. vol. 27. pp. 264-269.
13. Ma Y.N., Theerakulpisut P., Riddech N. Pesticide tolerant rhizobacteria isolated from rice (Oryza sativa) overcomes the effects of salt and drought stress in pesticide contaminated condition. Plant and Soil. 2023. vol. 490. no 1. pp. 521-539. https://doi.org/10.1007/s11104-023-06098-0
14. Roy T., Das N., Majumdar S. Pesticide tolerant rhizobacteria: paradigm of disease management and plant growth promotion. Plant microbe symbiosis. 2020. pp. 221-239. https://doi.org/10.1007/978-3-030-36248-5_12
15. Montes Luz B., Conrado A.C., Ellingsen J.K., Monteiro R.A. et al. Acetylene Reduction Assay: A Measure of Nitrogenase Activity in Plants and Bacteria. Current Protocols. 2023. vol. 3. no 5. Available at: https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpz1.766
16. Arkhipova T.N., Galimsyanova N.F., Kuzmina L.Y., Vysotskaya L.B. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity andphosphorus mobility in the rhizosphere. Plant, Soil and Environment. 2019. vol. 65. no. 6. pp. 313-319.
17. Sanchez-Gonzalez M.E., Mora-Herrera M.E., Wong-Villarreal A., De La Portilla-López N. et al. Effect of pH and Carbon Source on Phosphate Solubilization by Bacterial Strains in Pikovskaya Medium. Microorganisms. 2022. vol. 11. no. 1. pp. 49. https://doi.org/10.3390/microorganisms11010049
18. Kurepa J., Smalle J.A. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International journal of molecular sciences. 2022. vol. 23. no 4. pp. 1933. https://doi.org/10.3390/ijms23041933
19. He Y., Liu Y., Li M., Lamin-Samu A.T. et al. The Arabidopsis SMALL AUXIN UP RNA32 protein regulates ABA-mediated responses to drought stress. Frontiers in plant science. 2021. vol. 12. pp. 625493. https://doi.org/10.3389/fpls.2021.625493
20. Korshunova T.Y., Bakaeva M.D., Kuzina E.V., Rafikova G.F. et al. Role of Bacteria of the Genus Pseudomonas in the Sustainable Development of Agricultural Systems and Environmental Protection. Applied Biochemistry and Microbiology. 2021. vol. 57. no 3. pp. 281-296. https://doi.org/10.1134/S000368382103008X