Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

THE FORMATION CLASSES OF OBJECTS BY THE METHOD OF DISCRIMINANT ANALYSIS

https://doi.org/10.20914/2310-1202-2014-1-73-78

Abstract

Summary.The paper provides the method of discriminant analysis as a modern tool for the classification of objects by the example of flour production. Discriminant analysis is a statistical technique that allows us to study the differences between two or more groups of objects on multiple variables simultaneously and provides the ability to classify objects according to the principle of maximum similarity. Content of discriminant analysis is the development and study of statistical methods to examine the differences between two or more groups of objects on multiple variables simultaneously with the dominant line. In discriminant analysis, in contrast to the cluster, there is a training set, which is known what classes are objects. The training set is obtained rules, which further allow you to determine what class are new objects. Built discriminant functions, graphs of distribution of objects on quality classes, graphically presents classification methodology. During the performance was formed database consisting of 595 analyzes characterizing the quality of flour by 15 characters. Each assay described chemical parameters (mass fraction of protein mass fraction of ash, the mass fraction of fat, fiber content and water-soluble carbohydrates) and organoleptic quality of flour (moisture content, titratable acidity and active, and the mass fraction of gluten quality, taste, smell, and the crunch etc.). Classification accuracy of the method of discriminant analysis was 576 (98.02%).

About the Authors

V. K. Bitiukov
Voronezh state university of engineering technology
Russian Federation
professor
Department of information and control systems
phone (473) 255-38-75


M. L. Motorin
Voronezh state university of engineering technology
Russian Federation
assistant
Department of information and control systems
phone (473) 255-38-75


E. A. Savvina
Voronezh state university of engineering technology
Russian Federation
assistant
Department of information and control systems
phone (473) 255-38-75


References

1. Клекка У.Р., Ким Дж.-О., Мьюллер Ч.У. Факторный, кластерный и дискриминантный анализ. М.: Финансы и статистика, 1989. 215 с. Klekka U.R., Kim Dzh.-O., M’iuller Ch.U. Faktornyi, klasternyi I diskriminantnyi analiz [Factor, cluster and discriminant analysis]. Moscow, Finansy i statistica, 1989. 215 p. (In Russ.).

2. Саввина Е.А., Балашова Е.А., Битюков В.К. Использование методов дискриминантного анализа для классификации качества муки // Финансы. Экономика. Стратегия. 2013. №3. С. 20-23. Savvina E.A., Balashova E.A., Bitiukov V.K. Using the discriminant analysis methods for the classification of the quality of the flour. Finansy. Ekonomika. Strategiia. [Finance. Economy. Strategy], 2013, no. 3, pp. 20-23. (In Russ.).

3. Балашова Е.А., Битюков В.К., Саввина Е.А., Пономарева Е.И. Формирование системы информативных признаков для прогнозирования качества муки/ Е.А. Балашова, В.К. Битюков, Е.А. Саввина, Е.И. Пономарева // Сборник трудов 3-ей Международной научно- практической конференции «Ключевые вопросы в современной науке», 2013. С. 74-77. Balashova E.A, Bitiukov V.K., Savvina E.A., Ponomareva E.I. Formation of the system of informative signs for prognose quality flour. Sbornik trudov tret’ei Mezhdunarodnoi nauchno-practicheskoi konferentsii “Kliuchevye voprosy v sovremennoi nauke” [Proceedings of the 3rd international scientific and practical conference «the Key issues in modern science»], 2013. pp. 74-77. (In Russ.).


Review

For citations:


Bitiukov V.K., Motorin M.L., Savvina E.A. THE FORMATION CLASSES OF OBJECTS BY THE METHOD OF DISCRIMINANT ANALYSIS. Proceedings of the Voronezh State University of Engineering Technologies. 2014;(1):73-78. (In Russ.) https://doi.org/10.20914/2310-1202-2014-1-73-78

Views: 479


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)