Different ways of finding the feedback matrix for a linear dynamical system
https://doi.org/10.20914/2310-1202-2018-3-56-62
Abstract
About the Author
D. A. LitvinovRussian Federation
Assistant Lecturer, Department of Higher Mathematics and Information Technology, Revolution Av., 19 Voronezh, 394036, Russia
References
1. Khlebnikov M.V., Shcherbakov P.S. Bounded linear controloptimal by a quadratic criterion of a special type. Trudy IPU RAN [Proceedings of the ISP RAS] 2013. vol. 63. no 2. pp. 86-89 (in Russian)
2. Khlebnikov M.V. Control oflinear systems subjected to exogenous disturbances: сombined feedback. Avtomatika i Telemekhanika [Automation and Remote Control] 2016, vol. 77, no. 7, pp. 1141-1151. (in Russian)
3. Blanchini F., Miani S., Set-Theoretic Methods in Control. Boston, Birkh?user, 2008.
4. Lin F., Fardad M., Jovanovi?c M. Sparse feedback synthesis via the alternating direction method of multipliers. Proc. Amer. Control Conf. 2012, pp. 4765–4770.
5. Kreventsov E. G. The concentration spectrum of the poles in a given region at the compensating approach to the synthesis of the feedback matrix. Applied Mathematical Sciences. 2014, vol. 8, no. 25, pp. 1201 - 1211
6. Litvinov D.A. On the construction of feedback in the problems of control of linear dynamical systems.
7. Vestnik BGTU imeni Shukhova [Bulletin of the Belgorod state technological university of V.G. Shukhov] 2017. no. 5 pp. 164-170. (in Russian)
8. Litvinov D.A. Construction of linear feedback for control tasks. Aktual'nye napravleniya nauchnyh issledovanij XXI veka: teoriya i praktika .[Actual directions of scientific researches of the XXI century: theory and practice] 2017, vol. 5, no. 7-2, pp. 58-60. (in Russian)
9. Zubova S.P. On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints. Avtomatika i Telemekhanika [Automation and Remote Control]. 2011, vol. 72, no. 1, pp. 23-37. (in Russian)
Review
For citations:
Litvinov D.A. Different ways of finding the feedback matrix for a linear dynamical system. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(3):56-62. (In Russ.) https://doi.org/10.20914/2310-1202-2018-3-56-62