A combination of rapid and easy assays of biosurfactant producing bacterial strain isolated from automobiles repairing workshop in Aligarh


https://doi.org/10.20914/2310-1202-2018-3-153-163

Полный текст:


Аннотация

Routine washing, cleaning, repairing, maintenance of cars, bikes, scooters and disposal of waste of all kinds are carried out in automobile workshops are common observations in Aligarh. Considering the likelihood of existence of biosurfactant producing organisms at hydrocarbon contaminated site, a large number of soil samples were collected and isolation was carried out. A total of ten bacterial strains ALIG (01–10) were isolated out of which only isolate АLIG01 grown on GSP agar, Maconkey agar as well as on Pseudomonas agar plates which indicated suspected Pseudomonas spp. and exhibits positive biosurfactant activity through penetration assay, oil spreading technique, beta hemolytic activity and ЕI24 (96%), positive blue plate agar plate (> 2сm), qualatitative analysis, tolerance against hydrocarbon m-xylene, and microplate assay. This isolate АLIG01 is a valuable source to investigate further for future agriculture plant pathology and industrial applications.

Об авторах

Touseef Нussаin
Aligarh Muslim University
Индия


Abrar Ahmad Кhаn
Aligarh Muslim University
Индия


Список литературы

1. Alloway. B J. Heavy metals in soils, 2nd Ed. Chapman and Hall, India: Australia. 1995.

2. Abidemi. O.O. Levels of Pb, Fe, Cd and Co in Soils of Automobile Workshop in Osun State, Nigeria. J. Appl. Sci. Environ. Manage. 2011. no. 15 (2). pp. 279–282.

3. Abouseoud. M, Maachi. R, Amrane. A, Boudergua. S and Nabi. A. Evaluation of different carbon and nitro-gen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination no. 223. 2013. pp. 143.

4. Azka A, Hareem M, S.N. Chaudhary and F.W. Comparative Analysis of Biosurfactant Production Assays by Five Indigenous Oil Sludge Bacteria. Biologia, Pakistan. no. 63(2). 2017. pp. 205–209.

5. Ali S.R, Chowdhury B.R, Mondal. P, Rajak S. Screening and characterization of biosurfactants producing mi-croorganism form natural environment (whey spilled soil). J Nat Sci Res. no. 3(13). 2013. pp. 34 – 64.

6. Banat I.M, Franzetti A, Gandolfi I, Bestetti G, Martinotti M.G, Fracchia L. Microbial biosurfactants produc-tion, applications and future potential. Appl Microbiol Biotechnol. no. 87. 2010. pp. 427–444.

7. Banat, I.M, Makkar, R.S. Cameotra, S.S. Potential commercial Application of Microbial Surfactants. Applied Microbiol. Biotechnol. no. 53. 2000. pp. 495–508.

8. Bodour A A and Maier R.M. Application of a modified dropcollapse technique for surfactant quantification and screening of biosurfactant – producing microorganisms. J Microbiol Methods. no. 32. 1998. pp. 273–280.

9. Banat, I.M. Biosurfactants: production and possible uses in microbial enhanced oil-recovery and oil pollution remediation-a review. Bioresour. Technol. no. 51. 1995. pp. 1–12.

10. Cameotra S.S and Makkar, R.S. Recent applications of biosurfactants as biological and immunological mol-ecules. Curr. Opin. Microbiol. no. 7. 2004. pp. 262–266.

11. Carrillo P, Mardaraz, C, Pitta-Alvarez, I.S, Giulietti, A.M. Isolation and selection of biosurfactant-producing bacteria. World Journal of Microbiology and Biotechnology. no. 12. 1996. pp. 82–84.

12. Das P, Mukherjee S, Sivapathasekaran C, Sen R. Microbial surfactants of marine origin: Potentials and pro-spects. Adv Exp Med Biol. no. 672. 2010. pp. 88–101.

13. Das P, Mukherjee, S, and Sen, R. Antiadhesive action of a marine microbial surfactant. Colloids Surf. B Biointerfaces. no.71. 2009а. pp. 183–186.

14. Das, P, Mukherjee, S and Sen R. Biosurfactant of marine origin exhibiting heavy metal remediation proper-ties. Bioresour. Technol. no. 100. 2009b. pp. 4887–4890.

15. Duguid J.P. Staphylococcus: cluster-forming gram-positive cocci. In: Collee JG, Duguid JP, Fraser AG, Mar-mion BP, editors. Practical Medical Microbiology. 13th ed. Edinburgh, UK: Churchill Livingstone. 1989. pp. 303–316.

16. Davis, D.A, Lynch, H.C, Varley, J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enz. Micro Technol. no. 25(3–5). 1999. pp. 322–329.

17. EPA – office of air quality, planning and standards. Compilation of Air Pollutant Emission Factors AP 42, Stationary Point and Area Sources, Washington, D.C., 5 Ed., EPA. 2015. vol. 1.

18. Evans, LJ. Chemistry of metal retention by soils. Environ. Sci. Tech. no. 23(9). 1989. pp. 1046–1056.

19. Francy, D.S, Thomas, J.M, Raymond, R.L, Ward, C.H. Emulsification of hydrocarbon by surface bacteria. J Industrial Microbiol, vol. 8. 1991. pp. 237–46.

20. Gautam, K.K and Tyagi, V.K. Microbial surfactants: a review. J. Oleo Sci. no.55. 2006. pp. 155–166.

21. Georgiou, G, Lin, S.C and Sharma, M.M. Surface active compounds from microorganisms. Biotechnology, no. 10. 1990. pp. 60–65.

22. Hewald, S, Josephs, K and Bölker, M. Genetic Analysis of Biosurfactant Production in Ustilago maydis, Ap-plied and Environmental Microbiology, no. 71(6). 2005. pp. 3033–3040.

23. Ibrahim M. Banat, Andrea Franzetti, Isabella Gandolfi, Giuseppina Bestetti, Maria G. Martinotti, Letizia Fracchia, Thomas J. Smyth and Roger Marchant. Microbial biosurfactants production, applications and future poten-tial. Appl Microbiol Biotechnol. no. 87. 2010. pp. 427–444.

24. Jain D. K, Collins-Thompson D.L, Lee H.A drop collapsing test for screening surfactant-producing microor-ganisms. J Microbiol Methods, no. 13. 1991. pp. 271–279

25. Koglin A, Doetsch V and Bernhard F. Molecular engineering aspects for the production of new and modified biosurfactants. Adv Exp Med Biol., no. 672. 2010. pp. 158–169.

26. Lima T.M, Procópio L.C, Brandão F.D, Carvalho A.M, Tótola M.R. and Borges A.C. Biodegradability of bac-terial surfactants. Biodegradation, no. 22. 2011. pp. 585–592.

27. Lourith N, Kanlayavattanakul M. Natural surfactants used in cosmetics: Glycolipids. Int J Cosmet Sci. no. 31. 2009. pp. 255 – 261.

28. Martinez A, Ostrovsky P, Nunn D N. Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosathat is able to function in type II protein secretion. Mol Microbiol no. 28. 1998. pp. 1235–1246.

29. Meylheuc T, Van Oss C.J, Bellon, Fontaine MN. Adsorption of biosurfactant on solid surfaces and conse-quences regarding the bio-adhesion of Listeria monocytogenes LО28. J Appl Microbio. no. 91(5). 2001. pp. 822–832.

30. Miller, J.H. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1972. pp. 433.

31. Morita, T, Konishi, M, Fukuoka, T, Imura, T. and Kitamoto, D. Physiological Differences in the Formation of the Glycolipid Biosurfacants, Mannosylerythritol Lipids, between Pseudozyma antarticaand Pseudozyma aphidis, Ap-plied of Microbiology and Biotechnology, no. 74. 2007. pp. 307–315.

32. Morikawa M, Diado H, Takao T, Murata S, Shimonishi Y, Imanaka T.A new lipopeptide biosurfactant pro-duced by Arthrobacter sp. strain МIS38. J Bacterio. no. 175. 1993. pp. 6459–6466.

33. Morikawa M, Hirata Y, Imanaka T. A study on the structure function relationship of lipopeptide biosurfac-tants. Biochim Biophys Acta. no. 1488. 2000. pp. 211–218.

34. Mukherjee, S, Das, P and Sen, R. Towards commercial production of microbial surfactants. Trends Biotech-nol. no. 24. 2006. pp. 509–515.

35. Mulligan, C.N. Cooper, D.G. Neufeld, R.J. Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol. no. 62. 1984. pp. 311–314.

36. Ng L.S, Tan T.Y, Yeow, S.C.A cost-effective method for the presumptive identification of Enterobacteriaceae for diagnostic microbiology laboratories. Pathology. no. 42. 2010. pp. 280–283.

37. Nguyen, T. T, Youssef, N. H, McInerney, M.J. and Sabatinic, D.A. Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res. no. 42. 2008. pp. 1735.

38. Nitschke M, Costa S. Biosurfactants in food industry. Trends Food Sci Technol. no. 18. 2007. pp. 252–259.

39. Pelczar M.J Jr, Reid R.D.1958. Microbiology. New York, NY, USA: McGraw-Hill.

40. Pinzon, N.M, Ju, L.K. Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnology Letters, no. 31(10). 2009. pp. 1583–1588.

41. Persson, A. and Molin, G. Capacity for biosurfactant production of environmental Pseudomonas and Vibri-onaceae growing on carbohydrates. Appl. Microbiol. Biotechnol. no. 26. 1987. pp. 439–442.

42. Pruthi, V. and Cameotra, S.S. Effect of nutrients on optimal production of biosurfactants by Pseudomonas putida – a Gujarat oil field isolate. J. Surfact. Deterg. no. 6. 2003. pp. 65.

43. Pirôllo, M.P. S, Mariano, A. P, Lovaglio, R. B, Costa, S.G.V.A. O, Walter, V, Hausmann, R. and Contiero, J. Biosurfactant synthesis by Pseudomonas aeruginosaLBI isolated from a hydrocarbon – contaminated site. J. Appl. Microbiol. no. 105. 2008. pp. 1484.

44. Providenti, M. A, Flemming, C. A, Lee, H. and Trevore, J.T. Effect of addition of rhamnolipid biosurfactants or rhamnolipid producing Pseudomonas aeruginosaon phenanthrene mineralization in soil slurries. FEMS Microbiol. Ecol. 1995. no. 17. pp. 15.

45. Poremba, K, Gunkel, W, Lang, S and Wagner, F. Marine biosurfactants, III. Toxicity testing with marine mi-croorganisms and comparison with synthetic surfactants. Z. Naturforsch. no. 46. 1991. pp. 210–216.

46. Rahman, K. S, Banat, I. M, Thahira, J, Thayumanavan, T. and Lakshmanaperumalsamy, P. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosur-factant. Bioresour. Technol. no. 81. 2002а. pp. 25.

47. Robert, M, Mercade, E, Bosch, M. P, Parra, J. L, Espuny, M. J, Manresa, M.A. and Guinea, J. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44Тi. Biotechnol. Lett. no. 11. 1989. pp. 871.

48. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL. Emulsifier of ArthrobacterRAG-I: isolation and emulsifying properties. Appl Environ Microbiol. no. 37. 1979. pp. 402–408.

49. Rosenberg M, Gutnick D.L, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett. no. 9. 1980. pp. 29–33

50. Rodrigues L.R, Teixeira J.A, Van Der Mei H.C, Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis. Colloids Surf B Biointerfaces, no. 49. 2006. pp. 79–86.

51. Rodrigues, L, Banat, I. M, Teixeira, Jand Oliveira, R. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother, no.57. 2006. pp. 609–618.

52. Satpute, S. K, Bhawsar, B.D, Dhakephalkar P K, Chopade, B.A.2008. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Marine Sci. no. 37. 2008. pp. 243–250.

53. Satpute, S.K, A.G. Banpurkar, P.K. Dhakephalkar, I.M. Banat and B.A. Chopade. Methods for investigating biosurfactants and bioemulsifiers: A review. Crit. Rev. Biotechnol. no. 30. 2010. pp. 127–144.

54. Singh, P and Cameotra, S.S. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. no. 22. 2004. pp. 142–146.

55. Shoeb, E. Genetic Basis of Heavy Metal Tolerance in Bacteria. Ph. D. thesis. University of Karachi, Karachi, Pakistan, 2006.

56. Siegmund I, and Wagner F. New method for detecting rhamnolipids excreted by Pseudomonasspecies during growth on mineral agar. Biotechnol Tech., no. 5. 1991. pp. 265–268.

57. Said BH, Latifa S, Abdeljelil G, Abderrazak M. Screening of potential biosurfactant producing bacteria iso-lated from seawater biofilm. Afri. J. Biotech.11. no. 77. 2012. pp. 14153–14158.

58. Tambekar D. H, and Gadakh P.V. Biochemical and molecular dectection of biosurfactant producing bacteria from soil. Int. J. Life Sci. Biotech. & Pharma Res., no. 2(1). 2013. pp. 204 – 211.

59. Tomar S, Singh B.P, Lal M, Khan M.A, Hussain T, Sharma S, Kaushik S.K, Kumar S. Screening of noval mi-croorganism for biosurfactant and biocontrol activity against. Phytophthora infestans. J Env Biol. no. 35. 2014. pp. 893–899.

60. Usman, M.M, Dadrasnia, A, Tzin Lim, K, Mahmud, A.F, Ismail, S. Application of biosurfactants in environ-mental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering, no. 3(3). 2016. pp. 289–304.

61. Vijaya kumar S. and Saravanan V. Biosurfactant stypes, sources and applications. Res. J. Microbiol. no. 10. 2015. pp. 181 – 192.

62. Vaux, D, Cottingham, M. Method and apparatus for measuring surface configuration, patent number GВ0001568.5. 2001.

63. Walter V, Syldatk C, Hausmann R. Screening concepts for the isolation of biosurfactant producing microor-ganisms. Adv Exp Med Biol. 2010. no. 672. pp. 1–13.

64. Walter, V, C. Syldatk and R. Hausmann. Screening Concepts for the Isolation of Biosurfactant Producing Microorganisms. In: Biosurfactants, Ramkrishna, S. (Ed.). vol. 672. Landes Bioscience and Springer Science, New York, 2010 ISBN: 9781441959799.

65. Xu Q, Nakajima M, Liu Z. and Shiina T. Biosurfactants for microbubble preparation and application. Int J Mol Sci. no. 12. 2011. pp. 462–475.

66. Urum, K, Pekdemir, T. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, no. 57. 2004. pp. 1139–1150.

67. Yen Chen C, Baker S.C, Richard C. Darton R.C. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. Journal of Microbiological Methods. no. 70. 2007. pp. 503–510.

68. Zhang, G. L, Wu, Y. T, Qian, X.P. and Meng, Q. Biodegradation of crude oil by Pseudomonas aeruginosain the presence of rhamnolipids. J. Zhejiang Univ. Sci. B, no. 6. 2005. pp. 725.

69. Zajic, J.E, Gignard, H and Gerson, D F. Properties and biodegradation of a bioemulsifier from Corynebacte-rium hydrocarboclastus. Biotechnol. Bioeng. no. 19. 1977. pp. 1303–1320.

70. Saravanakumari P, and Mani K. Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresource Technol. no. 101(22) 2010. pp. 8851–8854.

71. Youssef N.H, Duncan K.E, Nagle D.P, Savage K.N, Knapp R.M, McInerney M.J.J. Comparison of methods to detect biosurfactant production by diverse microorganisms. Microbiol Methods. no. 56(3). 2004. pp. 339–347.

72. Kokare, C.R, Kadam, S.S, Mahadik, K.R, Chopade, B.A. Studies on bioemulsifier production from marine Streptomyces sp. S1. Indian J Biotechnol. no. 6. 2007. pp. 78–84.

73. Belcher, R.W, Huynh, K.V, Hoang, T.V, Crowley, D.E. Isolation of biosurfactant-producing bacteria from the Rancho La Brea Tar Pits. World J Microbiol Biotechnol. no. 28. 2012. pp. 3261–3267.

74. Bonilla, M, Olivaro, C, Caronal, M, Vazquez, A, Soubes, M. Production and characterization of a new bio-emulsifier from Pseudomonas putida МL2. J Appl Microbiol. no. 98. 2005. pp. 456–463.

75. Carter, G. Diagnostic Procedures in Veterinary Bacteriology and Mycology. 4th ed. Springfield, IL, USA: Charles C Thomas. 1984.

76. Plaza, G, Zjawiony, I, Banat, I. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated bioremediated soils. J Petro Science Eng. no. 50. 2006. pp. 71–77.

77. Shoeb E, Badar U, Akhter J, Shams H, Sultana M, Ansari M.A. Horizontal gene transfer of stress resistance genes through plasmid transport. World J Microbiol Biotechnol. no. 28. 2012. pp. 1021–1025.

78. Moran A, Alejandra M, Martinez F, et al. Quantification of surfactin in culture supernatant by hemolytic ac-tivity. Biotechnol Lett. no. 24. 2002. pp. 177–180.

79. Kumar, PA, Janardhan A, Viswanath B, Monika, K, Jung, Y.J, Narasimha, G. Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. 3 Biotech. 2016. no. 6. pp. 43.

80. Zhang, J., Xue, Q., Gao, H., Lai, H., Wang, P.Bacterial degradation of crude oil using solid formulations of bacillus strains isolated from oil-contaminated soil towards microbial enhanced oil recovery application. RSC Advanc-es, no. 6 (7). 2016. pp. 5566–5574.

81. Zhang, X., Xu, D., Zhu, C., Lundaa, T., Scherr, K.E. Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chemical Engineering Journal. no. 209. 2012. pp. 138–146.

82. Sakthipriya, N., Doble, M., Sangwai, J.S. Action of biosurfactant producing thermophilic Bacillus subtilis on waxy crude oil and long chain paraffins. International Biodeterioration and Biodegradation. no. 105. 2015. pp. 168–177.


Дополнительные файлы

1. list of figures
Тема
Тип Research Results
Скачать (5MB)    
Метаданные
2. manuscript with authors details
Тема
Тип Прочее
Скачать (14KB)    
Метаданные

Для цитирования: Нussаin T., Кhаn A.A. A combination of rapid and easy assays of biosurfactant producing bacterial strain isolated from automobiles repairing workshop in Aligarh. Вестник Воронежского государственного университета инженерных технологий. 2018;80(3):153-163. https://doi.org/10.20914/2310-1202-2018-3-153-163

For citation: Hussain T., Khan A.A. A combination of rapid and easy assays of biosurfactant producing bacterial strain isolated from automobiles repairing workshop in Aligarh. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(3):153-163. https://doi.org/10.20914/2310-1202-2018-3-153-163

Просмотров: 44

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)