Preview

Вестник Воронежского государственного университета инженерных технологий

Расширенный поиск

Применение ионообменного волокна на стадии доочистки сточных вод гальванического производства

https://doi.org/10.20914/2310-1202-2018-4-330-336

Аннотация

В гальваническом производстве используются большие объемы воды, которая на стадиях технологического процесса загрязняется различными соединениями. Сточная вода, содержащая ионы переходных металлов представляет собой не только опасный источник загрязнения окружающей среды, но и ценные отходы. Учитывая проблемы, связанные с экологией и рациональным использованием природных ресурсов необходимо создавать мало- и безотходные производства, в частности, разрабатывать новые технологические процессы и соответствующее оборудование, внедрять водооборотные циклы. В настоящей работе приведены результаты исследования сорбции катионов меди (II) и никеля (II) ионообменным волокном ФИБАН Х-1. Проведены калориметрические исследования тепловых эффектов взаимодействия волокна ФИБАН Х-1 с растворами нитратов меди (II) и никеля (II). Показано, что мощность, тепловой эффект и время процесса зависят от природы и концентрации ионов металлов в растворе. На основе экспериментальных данных рассчитана энтальпия процесса. Эндотермический эффект процесса объясняется энергетическими затратами, связанными с дегидратационными эффектами и изменением конформаций полимерных цепей волокна. Получены изотермы сорбции данных ионов. Установлено, что при всех исследуемых концентрациях ионы Ni2+ в данных условиях поглощаются ионообменным волокном лучше, чем катионы Cu2+. Рассчитанные константы сорбции меди (II) и никеля (II) больше 1. Показано, что уравнение Ленгмюра описывает сорбционную изотерму лучше, чем уравнение Фрейндлиха. Для глубокой очистки сточной воды от ионов металлов предложено использовать волокнистый сорбент ФИБАН Х-1.

Об авторах

Ю. С. Перегудов
Воронежский государственный университет инженерных технологий
Россия
к.х.н., доцент, кафедра неорганической химии и химической технологии, пр-т Революции, 19, г. Воронеж, 394036, Россия


А. В. Тимкова
Воронежский государственный университет инженерных технологий
магистрант, кафедра неорганической химии и химической технологии, пр-т Революции, 19, г. Воронеж, 394036, Россия


Е. М. Горбунова
Воронежский государственный университет инженерных технологий
к.х.н., доцент, кафедра неорганической химии и химической технологии, пр-т Революции, 19, г. Воронеж, 394066, Россия


С. Е. Плотникова
Воронежский государственный университет инженерных технологий
к.х.н., доцент, кафедра неорганической химии и химической технологии, пр-т Революции, 19, г. Воронеж, 394066, Россия


Список литературы

1. Жданова А.В., Илларионов С.А. Очистка сточных вод гальванического производства от загрязнений тяжелыми металлами // Вестник Пермского университета. Серия: Химия. 2012. № 1. С. 54–60.

2. Институт физико-органической химии Национальной академии наук Беларуси. ФИБАН-1. URL: http://ifoch.by/research/fiban/X1_1.html

3. Полянский Н.Г., Горбунов Г.В., Полянская Н.Я. Методы исследования ионитов. М.: Химия, 1976. 280 с.

4. Солдатов В.С., Зеленковский В.М., Сосинович З.И., Мосунова Н.В. и др. Селективное выделение меди и цинка из модельных растворов шахтных вод волокнистыми ионитами // Известия Национальной академии наук Беларуси. Серия химических наук. 2011. № 2. С. 41–45.

5. Кулиев К.А., Плотникова С.Е., Горбунова Е.М., Таранова А.Н. Смешаннолигандные комплексы мeди (II) с дитиолфенолами и гетероциклическими диаминами // Вестник ВГУИТ. 2017. № 1. С. 248–256.

6. Дехтярь Т.Ф., Бочарова Е.С. Определение меди фотометрическим методом // Молодежный научный вестник. 2017. № 1 (13). С. 81–86.

7. Булатов А.В., Зеймаль А.Е., Николаева Д.Н., Никоноров В.В. и др. Методические указания к практикуму «Химические методы анализа»: учебное пособие. СПб.: ВВМ, 2010. 54 с.

8. Астапов А.В., Перегудов Ю.С., Копылова В.Д. Попова К.А. Энтальпии взаимодействия сильноосновных анионитов с ионами аминокислот // Журнал физической химии. 2009. Т. 83. № 6. С. 1016–1020.

9. Крестов Г.А. Термодинамика ионных процессов в растворах. Л.: Химия, 1984. 272 с.

10. Астапов А.В., Перегудов Ю.С., Нифталиев С.И. Сорбция катионов никеля (II) хелатным волокнистым сорбентом ФИБАН Х1 // Журнал физической химии. 2017. № 8. С. 1397–1402.

11. Петров Ю.П., Котюков А.Б. Совершенствование конструкции фильтров с загрузкой из углеродных волокнистых сорбентов (УВС), активированной углеродной ткани (АУТ) и волокнистого ионообменного материала ВИОН // Вестник Пермского университета. Геология. 2013. № 2 (19). С. 94–101.


Рецензия

Для цитирования:


Перегудов Ю.С., Тимкова А.В., Горбунова Е.М., Плотникова С.Е. Применение ионообменного волокна на стадии доочистки сточных вод гальванического производства. Вестник Воронежского государственного университета инженерных технологий. 2018;80(4):330-336. https://doi.org/10.20914/2310-1202-2018-4-330-336

For citation:


Peregudov Yu.S., Timkova A.V., Gorbunova E.M., Plotnicova S.E. Use of ion-exchange fiber at the purification stage of wastewater of electroplating. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(4):330-336. (In Russ.) https://doi.org/10.20914/2310-1202-2018-4-330-336

Просмотров: 587


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)