Study of organoleptic and physico-chemical parameters of snacks based on mountain ash (Aronia melnocarpa)
https://doi.org/10.20914/2310-1202-2019-3-99-110
Abstract
About the Authors
E. A. Vasilievagraduate student, technology and organization of public catering department, Molodogvardeiskaya, 244 Samara, 443100, Russia
E. A. Eliseeva
student, technology and organization of public catering department, Molodogvardeiskaya, 244 Samara, 443100, Russia
N. V. Makarova
Dr. Sci. (Chem.), Professor, technology and organization of public catering department, Molodogvardeiskaya, 244 Samara, 443100, Russia
D. F. Ignatova
Cand. Sci. (Engin.), associate professor, technology and organization of public catering department, Molodogvardeiskaya, 244 Samara, 443100, Russia
Y. I. Solina
student, technology and organization of public catering department, Molodogvardeiskaya, 244 Samara, 443100, Russia
References
1. Sidor A., Dro?d?y?ska A., Gramza-Micha?owska A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors – An overview. Trends in Food Sci. Technol. 2019. vol. 89. pp. 45–60. doi: 10.1016/j.tifs.2019.05.006
2. Appel K., Meiser P., Mill?n E., Collado J.A. et al. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-?B and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages. Fitoterapia. 2015. vol. 105. pp. 73–82. doi: 10.1016/j.fitote.2015.06.009
3. Denev P., ??? M., Kratchanova M., Blazheva D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019. vol. 284. pp. 108–117. doi: 10.1016/j.foodchem.2019.01.108
4. Jakobeka L., Drenjan?evi? M., Juki? V., ?eruga M. Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries. Scientia Horticulturae. 2012. vol. 147. pp. 56–63. doi: 10.1016/j.scienta.2012.09.006
5. Berm?dez-Soto M.J., Tom?s-Barber?n F.M., Garc?a-Conesa M.T. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007. vol. 102 (3). pp. 865–874. doi: 10.1016/j.foodchem.2006.06.025
6. Takahashi A., Sakaguchi H., Higuchi O., Suzuki T. et al. Intestinal absorption of black chokeberry cyanidin 3glycosides is promoted by capsaicin and capsiate in a rat ligated small intestinal loop model. Food Chem. vol. 277. pp. 323–326. doi: 10.1016/j.foodchem.2018.10.094
7. Brazdauskas T., Montero L., Venskutonis P.R., Iba?ez E. et al. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries (Aronia melanocarpa) pomace. J. Chromatography A. 2016. vol. 1468. pp. 126–135. doi: 10.1016/j.chroma.2016.09.033
8. D’Alessandro L.G., Dimitrov K., Vauchel P., Nikov I. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chem. Eng. Res. Design. 2014. vol. 92 (10). pp. 1818–1826. doi: 10.1016/j.cherd.2013.11.020
9. Dulf F.V., Vodnar D.C., Dulf E.H., Diaconeasa Z. et al. Liberation and recovery of phenolic antioxidants and lipids in chokeberry (Aronia melanocarpa) pomace by solid-state bioprocessing using Aspergillus niger and Rhizopus oligosporus strains. Food Sci. Technol. 2018. vol. 87. pp. 241–249. doi: 10.1016/j.lwt.2017.08.084
10. ?uji? N., Trifkovi? K., Bugarski B., Ibri? S. et al. Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Ind. Crops Prod. 2016. vol. 86. pp. 120–131. doi: 10.1016/j.indcrop.2016.03.045
11. Pieczykolan E., Kurek M.A. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. Int. J. Biol. Macromol. 2019. vol. 129. pp. 665–671. doi: 10.1016/j.ijbiomac.2019.02.073
12. Song E.K., Park H., Kim H.S. Additive effect of walnut and chokeberry on regulation of antioxidant enzyme gene expression and attenuation of lipid peroxidation in d-galactose-induced aging-mouse model. Nutr. Res. 2018. doi: 10.1016/j.nutres.2018.09.011
13. Bhaswant M., Shafie S.R., Mathai M.L., Mouatt P. et al. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition. 2017. vol. 41. pp. 24–31. doi: 10.1016/j.nut.2016.12.009
14. Worsztynowicz P., Napiera?a M., Bia?as W., Grajek W. et al. Pancreatic ?-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.). Proces. Biochem. 2014. vol. 49 (9). pp. 1457–1463. doi: 10.1016/j.procbio.2014.06.002
15. ?uji? N., Savikin K., Miloradovic Z., Ivanov M. et al. Characterization of dried chokeberry fruit extract and its chronic effects on blood pressure and oxidative stress in spontaneously hypertensive rats. J. Functional Foods. 2018. vol. 44. pp. 330–339. doi: 10.1016/j.jff.2018.02.027
16. Loo B.M., Erlund I., Koli R., Puukka P. et al. Consumption of chokeberry (Aronia mitschurinii) products modestly lowered blood pressure and reduced low-grade inflammation in patients with mildly elevated blood pressure. Nutr. Res. 2016. vol. 36 (11). pp. 1222–1230. doi: 10.1016/j.nutres.2016.09.005
17. Handeland M., Grude N., Torp T., Slimestad R. Black chokeberry juice (Aronia melanocarpa) reduces incidences of urinary tract infection among nursing home residents in the long term-a pilot study. Nutr. Res. vol. 34 (6). pp. 518–525. doi: 10.1016/j.nutres.2014.05.005
18. Park H., Liu Y., Kim H.S., Shin J.H. Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease. Nutr. Res. 2016. vol. 3 (1). pp. 57–64. doi: 10.1016/j.nutres.2015.10.010
19. S?jka M., Ko?odziejczyk K., Milala J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Ind. Crops Prod. 2013. vol. 51. pp. 77–86. doi: 10.1016/j.indcrop.2013.08.051
20. Kosmala M., Zdu?czyk Z., Karli?ska E., Ju?kiewicz J. The effects of strawberry, black currant, and chokeberry extracts in a grain dietary fiber matrix on intestinal fermentation in rats. Food Res. Int. 2014. vol. 64. pp. 752–761. doi: 10.1016/j.foodres.2014.07.010
21. Alessandro L.G., Kriaa K., Nikov I., Dimitrov K. Ultrasound assisted extraction of polyphenols from black chokeberry. Separation and Purification Technology. 2012. vol. 93. pp. 42–47.
22. Rugina D., Scontxa Z., Leopold L. Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on HeLa human cervical tumor cells. Journal of Medicinal Food. 2012. vol. 15 (8). pp. 700–706.
23. Demidova A.V., Makarova N.V. The influence of blanching regimes on the physicochemical properties and antioxidant activity of fruit raw materials by the example of cherries, plums, aronia, strawberries. Food Industry. 2016. no. 2. pp. 40–44. (in Russian).
24. Makarova N.V., Zyuzina A.V. The study of antioxidant activity of apples of various varieties. Technique and technology of food production. 2011. no. 4 (23). (in Russian).
25. 25 Dubodel N.P., Victory M.I., Shashin D.L. Comparative evaluation of soluble solids analysis methods in concentrated fruit and vegetable purees. Beer and drinks. 2015. no. 3. pp. 40–43. (in Russian).
26. Magwazaa L.S., Opara U.L. Analytical methods for determination of sugars and sweetness of horticultural products – A review. Scientia Horticulturae. 2015. vol. 184. pp. 179–192. doi: 10.1016/j.scienta.2015.01.001
27. Anisimovich I.P., Otman R., Deineka L.A., Deineka V.I. et al. Determination of the acidity of some fruits, juices and soft drinks. Scientific statements of BelSU. 2011. no. 9 (104). pp. 250–257. (in Russian).
28. L? J-M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell. Mol. Med. 2010. vol. 14 (4). pp. 840–860. doi: 10.1111/j. 1582–4934.2009.00897.x
29. Holscher H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut microbes. 2017. vol. 8 (2). pp. 172–184. doi:10.1080/19490976.2017.1290756
30. Rice-Evans C., Miller N., Paganga G. Antioxidant properties of phenolic compounds. Trends in Plant Sci. 1997. vol. 4 (2). pp. 152–159. doi: 10.1016/S1360–1385(97)01018–2
31. Bose S., Sarkar D., Bose A. Natural Flavonoids and Its Pharmaceutical Importance. The Pharma Review. 2018. pp. 61–75.
32. Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017. vol. 61 (1). pp. 1–21. doi: 10.1080/16546628.2017.1361779.
33. Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Tirzitis G., Bartosz G. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol. 2010. vol. 52 (2). pp.139–142.
34. Implication in Various Diseases. Ind. J. Clin. Biochem. 2015. vol. 30 (1). pp. 11–26. doi: 10.1007/s12291–014–0446–0
35.
Review
For citations:
Vasilieva E.A., Eliseeva E.A., Makarova N.V., Ignatova D.F., Solina Y.I. Study of organoleptic and physico-chemical parameters of snacks based on mountain ash (Aronia melnocarpa). Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(3):99-110. (In Russ.) https://doi.org/10.20914/2310-1202-2019-3-99-110