Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

Biologically active bread peptides: sources, routes of formation, properties (mini review)

https://doi.org/10.20914/2310-1202-2025-3-

Abstract

The development of bioinformatics research methods facilitates the in-depth study of various biological objects, including those of animal and plant origin, with the goal of producing products from them that can be effectively used in medicine and various sectors of the food industry. It can be assumed that the results of numerous studies demonstrating the advantages of sourdough bread over yeast bread in a number of respects (reduced glycemic load and allergenic properties of proteins, higher antioxidant activity, better digestibility of minerals, etc.) are due, among other factors, to the presence of certain biologically active peptides. The purpose of this study was to identify, systematize, and analyze scientific and technical information related to the study of proteolysis in semi-finished bakery products, the release of peptides, and their biological activity. The conducted analysis of the scientific and technical literature indicates that biologically active peptides are the focus of attention of scientists worldwide. Research into methods for extracting them from a variety of raw materials and the conditions that determine the quantity and properties of released or synthesized biologically active peptides remains relevant. Oxidative stress, associated with the production of reactive oxygen species, is a common factor in the pathogenesis of most chronic inflammatory diseases. Therefore, dietary antioxidants currently represent a new, effective strategy for counteracting this condition. Therefore, research aimed at identifying the role of peptides contained in food products, including sourdough bakery products, in the prevention of a number of socially significant diseases, primarily cardiovascular diseases, is particularly relevant.

About the Authors

I. М. Zharkova
Voronezh State University of Engineering Technologies

Dr. Sci. (Engin.), professor, bakery technology, confectionery, pasta and grain processing industries department, Revolution Av., 19 Voronezh, 394036, Russia



D. S. Ivanchikov
Voronezh State University of Engineering Technologies

graduate student, bakery technology, confectionery, pasta and grain processing industries department, Revolution Av., 19 Voronezh, 394036, Russia



References

1. Nasri M. Protein hydrolysates and biopeptides Production, biological activities, and applications in foods and health benefits. A review. Advances in Food and Nutrition Research. 2017. vol. 81. pp. 109–159. doi:10.1016/bs.afnr.2016.10.003

2. Ahangaran M., Afanasev D.A., Chernukha I.M., Mashentseva N.G., Gharaviri M. Bioactive peptides and antinutrients in chickpea: description and properties (a review). Proceedings on applied botany, genetics and breeding. 2022. vol. 183. no. 1. pp. 214–223. doi:10.30901/2227-8834-2022-1-214-223 (in Russian)

3. Salger M., Stark T.D., Hofmann T. Taste Modulating Peptides from Overfermented Cocoa Beans. Journal of agricultural and food chemistry. 2019. vol. 67. no. 15. pp. 4311–4320. doi:10.1021/acs.jafc.9b00905

4. Cicero A.F.G., Fogacci F., Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. British journal of pharmacology. 2017. vol. 174. no. 11. pp. 1378–1394. doi:10.1111/bph.13608

5. Chidike Ezeorba T.P., Ezugwu A.L., Chukwuma I.F., Anaduaka E.G., Udenigwe C.C. Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum). Food chemistry. 2024. vol. 435. p. 137632. doi: 10.1016/j.foodchem.2023.137632

6. Nagaoka S. Structure–function properties of hypolipidemic peptide. Journal of Food Biochemistry. 2019. vol. 43. no. 1. p. e12539. doi:10.1111/jfbc.12539

7. Zhong F., Liu J., Ma J.J., Shoemaker C.F. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Research International. 2007. vol. 40. pp. 661–667. doi:10.1016/j.foodres.2006.11.011

8. Díaz-Gómez J.L., Castorena-Torres F., Preciado-Ortiz R.E., GarcíaLara S. Anti-cancer activity of maize bioactive peptides. Frontiers in Chemistry. 2017. no. 5. p. 44. doi:10.3389/fchem.2017.00044

9. Barati M., Javanmardi F., Mousavi Jazayeri S.M.H., Jabbari M., Rahmani J., Barati F. et al. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Comprehensive Reviews in Food Science and Food Safety. 2020. no. 19(4). pp. 1488–1520. doi:10.1111/1541-4337.12578

10. Seppo L., Jauhiainen T., Poussa T., Korpela R. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. The American journal of clinical nutrition. 2003. vol. 77. no. 2. pp. 326–330. doi:10.1093/ajcn/77.2.326

11. Bhat Z.F., Kumar S., Bhat H.F. Antihypertensive peptides of animal origin: A review. Critical Reviews in Food Science and Nutrition. 2017. vol. 57. no. 3. pp. 566–578. doi:10.1080/10408398.2014.898241

12. Tikhonov S.L., Tikhonova N.V., Ozhgikhina A.S., Pestova I.G. New antioxidant peptide and mechanism of biological activity. Dal’nevostochnyj agrarnyj vestnik. – Far Eastern Agrarian Bulletin. 2023. vol. 17. no. 3. pp. 148–156. doi: 10.22450/19996837_2023_3_148 (in Russian)

13. Samaei S.P., Ghorbani M., Tagliazucchi D., Martini S., Gotti R., Themelis T. et al. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba L.) seed protein hydrolysates and fortified apple juice. Food Chemistry. 2020. vol. 330. p. 127120. doi: 10.1016/j.foodchem.2020.127120

14. Wang M., Sun X., Luo W., Božović S., Gong C., Ren J. Characterization and analysis of antioxidant activity of walnut-derived pentapeptide PW5 via nuclear magnetic resonance spectroscopy. Food Chemistry. 2021. vol. 339. p. 128047. doi: 10.1016/j.foodchem.2020.128047

15. Al-Shamsi K.A., Mudgil P., Hassan H.M., Maqsood S. Camel milk protein hydrolysates with improved technofunctional properties and enhanced antioxidant potential in in vitro and in food model systems. Journal of Dairy Science. 2018. vol. 101. no. 1. pp. 47–60. doi:10.3168/jds.2017-13194

16. Coda R., Rizzello C.G., Pinto D., Gobbetti M. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Applied and environmental microbiology. 2012. vol. 78. no. 4. pp. 1087–1096. doi:10.1128/AEM.06837-11

17. Cicchi C., Leri M., Bucciantini M., Galli V., Guerrini S., Jiménez-Ortas Á., Ceacero-Heras D. et al. Sourdough Breads Made with Selected Lactobacillus Strains and Spelt Flour Contain Peptides That Positively Impact Intestinal Barrier. Foods. 2025. no. 14. p. 3184. doi:10.3390/foods14183184

18. Yesiltas B., García-Moreno P.J., Gregersen S., Olsen T.H., Jones N.C., Hoffmann S.V., Marcatili P. et al. Antioxidant peptides derived from potato, seaweed, microbial and spinach proteins: Oxidative stability of 5% fish oil-in-water emulsions. Food chemistry. 2022. vol. 385. p. 132699. doi:10.1016/j.foodchem.2022.132699

19. Tonolo F., Coletta S., Fiorese F., Grinzato A., Albanesi M., Folda A., Ferro S. et al. Sunflower seed-derived bioactive peptides show antioxidant and anti-inflammatory activity: From in silico simulation to the animal model. Food chemistry. 2024. vol. 439. p. 138124. doi:10.1016/j.foodchem.2023.138124

20. Miao J., Liu G., Ke C., Fan W., Li C., Chen Y. et al. Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli. Food Control. 2016. vol. 65. pp. 63–72. doi:10.1016/j.foodcont.2016.01.023

21. Zhu Z., Pan F., Wang O., Zhao L., Zhao L. Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis. Nutrients. 2024. vol. 16. no. 1. p. 175. doi:10.3390/nu16010175

22. Wang P., Ma T. Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods (Basel, Switzerland). 2024. vol. 13. no. 19. p. 3204. doi:10.3390/foods13193204

23. Andrés C.M.C., Pérez de la Lastra J.M., Munguira E.B., Juan C.A., Pérez-Lebeña E. The Multifaceted Health Benefits of Broccoli-A Review of Glucosinolates, Phenolics and Antimicrobial Peptides. Molecules (Basel, Switzerland). 2025. vol. 30. no. 11. p. 2262. doi:10.3390/molecules30112262

24. Ruiz-López F.J., Espinosa-Rodríguez B.A., Silva-Mares D.A., González-Martínez B.E., López-Cabanillas Lomelí M., Méndez-López L.F., Vázquez-Rodríguez J.A. In Silico Identification of Peptides with PPARγ Antagonism in Protein Hydrolysate from Rice (Oryza sativa). Pharmaceuticals (Basel, Switzerland). 2023. vol. 16. no. 3. p. 440. doi:10.3390/ph16030440

25. Zhang D., He X., Cao J. Zhongguo xue xi chong bing fang zhi za zhi. Chinese journal of schistosomiasis control. 2023. vol. 35. no. 2. pp. 191–198. doi:10.16250/j.32.1374.2023011

26. Lou J., Zhang D., Wu J., Zhu G., Zhang M., Tang J., Fang Y. et al. Antimalarial activity of cecropin antimicrobial peptides derived from Anopheles mosquitoes. Antimicrobial agents and chemotherapy. 2024. vol. 68. no. 7. p. e0031124. doi:10.1128/aac.00311-24

27. Admassu H., Gasmalla M.A.A., Yang R., Zhao W. Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and antidiabetic properties. Journal of Food Science. 2018. vol. 83. no. 1. pp. 6–16. doi: 10.1111/1750-3841.14011

28. Li Y., Yang N., Shi F., Ye F., Huang J. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from Tartary buckwheat albumin. Journal of the science of food and agriculture. 2023. vol. 103. no. 10. pp. 5019–5027. doi: 10.1002/jsfa.12573

29. Duan X., Dong Y., Zhang M., Li Z., Bu G., Chen F. Identification and molecular interactions of novel ACE inhibitory peptides from rapeseed protein. Food chemistry. 2023. vol. 422. p. 136085. doi:10.1016/j.foodchem.2023.136085

30. Beaubier S., Durand E., Lenclume C., Fine F., Aymes A., Framboisier X., Kapel R. et al. Chelating peptides from rapeseed meal protein hydrolysates: identification and evaluation of their capacity to inhibit lipid oxidation. Food chemistry. 2023. vol. 422. p. 136187. doi:10.1016/j.foodchem.2023.136187

31. Garaviri M., Degtyarev I.A., Fomenko I.A., Chernukha I.M., Mashentseva N.G. Structural analysis and molecular docking of a new antioxidant peptide from chickpea protein hydrolysate (Cicer arietinum L.). Food processing industry. 2025. no. 9. pp. 153–158. doi: 10.52653/PPI.2025.9.9.026 (in Russian)

32. Rizzello C.G., Lavecchia A., Gramaglia V., Gobbetti M. Long-term fungal inhibition by Pisum sativum flour hydrolysate during storage of wheat flour bread. Applied and environmental microbiology. 2015. no. 81. pp. 4195–4206. doi:10.1128/AEM.04088-14

33. Bashash M., Wang-Pruski G., He Q.S., Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Comprehensive reviews in food science and food safety. 2024. vol. 23. no. 5. p. e70007. doi:10.1111/1541-4337.70007

34. John W.A., Böttcher N.L., Aßkamp M., Bergounhou A., Kumari N., Ho P.W., D'Souza R.N. et al. Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food chemistry. 2019. vol. 278. pp. 786–794. doi: 10.1016/j.foodchem.2018.11.108

35. Luti S., Mazzoli L., Ramazzotti M. et al. Antioxidant and anti-inflammatory properties of sourdoughs containing selected Lactobacilli strains are retained in breads. Food chemistry. 2020. no. 322. p. 126710. doi: 10.1016/j.foodchem.2020.126710

36. Purohit K., Pathak R., Hayes E., Sunna A. Novel bioactive peptides from ginger rhizome: Integrating in silico and in vitro analysis with mechanistic insights through molecular docking. Food chemistry. 2025. vol. 484. p. 144432. doi: 10.1016/j.foodchem.2025.144432

37. Siddiqui I., Owais M., Husain Q. Antimicrobial effects of peptides from fenugreek and ginger proteins using Fe3O4@PDA-MWCNT conjugated trypsin by improving enzyme stability & applications. International journal of biological macromolecules. 2024. vol. 282 (Pt 5). p. 137197. doi: 10.1016/j.ijbiomac.2024.137197

38. Wang X., Ai X., Zhu Z., Zhang M., Pan F., Yang Z., Wang O. et al. Pancreatic lipase inhibitory effects of peptides derived from sesame proteins: In silico and in vitro analyses. International journal of biological macromolecules. 2022. vol. 222 (Pt A). pp. 1531–1537. doi: 10.1016/j.ijbiomac.2022.09.259

39. Gobbetti M., De Angelis M., Di Cagno R., Calasso M., Archetti G., Rizzello C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. International journal of food microbiology. 2019. no. 302. pp. 103–113. doi: 10.1016/j.ijfoodmicro.2018.05.018

40. Zharkova I.M., Roslyakov Yu.F., Ivanchikov D.S. Sourdoughs of Spontaneous (Natural) Fermentation in Modern Bakery Production. Food Processing: Techniques and Technology. 2023. vol. 53. no. 3. pp. 525–544. doi:10.21603/2074-9414-2023-3-2455 (in Russian)

41. de Vuyst L., van Kerrebroeck S., Leroy F. Microbial ecology and process technology of sourdough fermentation. Advances in Applied Microbiology. 2017. no. 100. pp. 49–160. doi: 10.1016/bs.aambs.2017.02.003

42. Galli V., Mazzoli L., Luti S. et al. Effect of selected strains of lactobacilli on the antioxidant and anti-inflammatory properties of sourdough. International Journal of Food Microbiology. 2018. no. 286. pp. 55–65. doi: 10.1016/j.ijfoodmicro.2018.07.018

43. Oleinikova Y., Amangeldi A., Zhaksylyk A., Saubenova M., Sadanov A. Sourdough Microbiota for Improving Bread Preservation and Safety: Main Directions and New Strategies. Foods. 2025. no. 14. p. 2443. doi:10.3390/foods14142443

44. Gänzle M.G., Loponen J., Gobbetti M. Proteolysis in sourdough fermentations: Mechanisms and potential for improved bread quality. Trends in Food Science & Technology. 2008. no. 19. pp. 513–521. doi: 10.1016/j.tifs.2008.04.002

45. Galli V., Venturi M., Pini N., Guerrini S., Granchi L., Vincenzini M. Liquid and firm sourdough fermentation: Microbial robustness and interactions during consecutive backsloppings. LWT. 2019. no. 105. pp. 9–15. doi: 10.1016/j.lwt.2019.02.004

46. European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. Official Journal of the European Communities L 61. 1995.

47. Axel C., Zannini E., Arendt E.K. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical reviews in food science and nutrition. 2017. vol. 57. no. 16. pp. 3528–3542. doi: 10.1080/10408398.2016.1147417

48. Garofalo C., Zannini E., Aquilanti L. et al. Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. Journal of agricultural and food chemistry. 2012. vol. 60. no. 31. pp. 7719–7728. doi:10.1021/jf301173u

49. Hernández-Figueroa R.H., Mani-López E., López-Malo A. Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics (Basel, Switzerland). 2022. no. 11. p. 1813. doi:10.3390/antibiotics11121813

50. Ström K., Sjögren J., Broberg A., Schnürer J. Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(L-Phe-L-Pro) and Cyclo(L-Phe-trans 4 OH-L-Pro) and 3 Phenyllactic Acid. Applied and environmental microbiology. 2002. no. 68. pp. 4322–4327. doi:10.1128/AEM.68.9.4322-4327.2002

51. Dal Bello F., Clarke C.I., Ryan L.A.M., Ulmer H., Schober T.J., Ström K., Sjögren J. et al. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science. 2007. no. 45. pp. 309–318. doi: 10.1016/j.jcs.2006.09.004

52. Chai Y., Ma Q., Nong X., Mu X., Huang A. Dissecting LuxS/AI 2 quorum sensing system-mediated phenyllactic acid production mechanisms of Lactiplantibacillus plantarum L3. Food Research International. 2023. no. 166. p. 112582. doi: 10.1016/j.foodres.2023.112582

53. Axel C., Zannini E., Arendt E.K., Waters D.M., Czerny M. Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2D by HRGC/MS using stable isotope dilution assay. Analytical and bioanalytical chemistry. 2014. no. 406. pp. 2433–2444. doi: 10.1007/s00216-014-7620-3

54. Nionelli L., Wang Y., Pontonio E., Immonen M., Rizzello C.G., Maina H.N., Katina K., Coda R. Antifungal effect of bioprocessed surplus bread as ingredient for bread-making: Identification of active compounds and impact on shelf-life. Food Control. 2020. no. 118. p. 107437. doi: 10.1016/j.foodcont.2020.107437

55. Coda R., Rizzello C.G., Nigro F., De Angelis M., Arnault P., Gobbetti M. Long-term fungal inhibitory activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage. Applied and environmental microbiology. 2008. no. 74. pp. 7391–7398. doi: 10.1128/AEM.01420-08

56. Ebrahimi M., Sadeghi A., Mortazavi S.A. The use of cyclic dipeptide producing LAB with potent anti-aflatoxigenic capability to improve techno-functional properties of clean-label bread. Annals of Microbiology. 2020. no. 70. p. 24. doi: 10.1186/s13213-020-01571-y

57. Rizzello C.G., Cassone A., Coda R., Gobbetti M. Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food chemistry. 2011. vol. 127. pp. 952–959. doi: 10.1016/j.foodchem.2011.01.063

58. Verni M., Wang Y., Clement H., Koirala P., Rizzello C.G., Coda R. Antifungal peptides from faba bean flour fermented by Levilactobacillus brevis AM7 improve the shelf-life of composite faba-wheat bread. International journal of food microbiology. 2023. no. 407. p. 110403. doi: 10.1016/j.ijfoodmicro.2023.110403

59. Kareb O., Aïder M. Quorum Sensing Circuits in the Communicating Mechanisms of Bacteria and Its Implication in the Biosynthesis of Bacteriocins by Lactic Acid Bacteria: A Review. Probiotics and Antimicrobial Proteins. 2020. no. 12. pp. 5–17. doi: 10.1007/s12602-019-09555-4

60. Belova A.M., Kanikovskaya A.A., Mashentseva N.G. Screening of lactic acid bacteria – producers of antimicrobial peptides. In: Poland Readings. Collection of Proceedings of the VI International Scientific and Practical Youth Conference. Moscow, 2024. pp. 233–240. (in Russian)

61. Yilmaz B., Bangar S.P., Echegaray N. et al. The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms. 2022. vol. 10. no. 4. p. 826. doi:10.3390/microorganisms10040826

62. Şanlier N., Gökcen B.B., Sezgin A.C. Health benefits of fermented foods. Critical reviews in food science and nutrition. 2017. no. 25. pp. 1–22. doi:10.1080/10408398.2017.1383355

63.


Review

For citations:


Zharkova I.М., Ivanchikov D.S. Biologically active bread peptides: sources, routes of formation, properties (mini review). Proceedings of the Voronezh State University of Engineering Technologies. 2025;87(3):66-77. (In Russ.) https://doi.org/10.20914/2310-1202-2025-3-

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)