Preview

Proceedings of the Voronezh State University of Engineering Technologies

Advanced search

ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM

https://doi.org/10.20914/2310-1202-2014-1-90-93

Abstract

Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences ve￾locity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.

About the Authors

V. S. Polenov
Voronezh, Military Educational Research Centre of Air Force «Air Force Academy after professor N.E. Zhukovskii and Iu.A. Gagarin» 4 RD dep. res. cent. (battle application and security VVC)
Russian Federation
Scientific associate
phone (473) 244-77-16


L. A. Kukarskikh
Voronezh, Military Educational Research Centre of Air Force «Air Force Academy after professor N.E. Zhukovskii and Iu.A. Gagarin» 4 RD dep. res. cent. (battle application and security VVC)
Russian Federation
senior staff scientist


A. N. Skliarov
Voronezh, Military Educational Research Centre of Air Force «Air Force Academy after professor N.E. Zhukovskii and Iu.A. Gagarin»
Russian Federation
associate Professor
Department of aerod.-engin. supply
phone (473) 244-77-44


References

1. Био М.А. Теория распространения упругих волн в насыщенной водой пористой среде I. Диапазон низких частот // Акустическое общество. Америка. 1956. Т. 28. № 2. С. 168-178. Bio M.A. Theory propagation of elastic waves in a fluid-saturated porous solid I. Low-Frequency Range. Akusticheskoe obshchestvo. Amerika. [Acoustic society. America], 1956, vol. 28, no. 2, pp. 168-178. (In Russ.).

2. Био М.А. Теория распространения упругих волн в насыщенной водой пористой среде II. Диапазон высоких частот // Акуст. общество. Америка. 1956. Т. 28. № 2. С. 179-191. Bio M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid II. Higher Frequency Range. Akusticheskoe obshchestvo. Amerika. [Acoustic society. America], 1956, vol. 28, no. 2, pp. 179-191. (In Russ.).

3. Косачевский Л.Я. О распространении упругих волн в двухкомпонентных средах // ПММ. 1959. Т. 23. № 6. С. 1115-1123. Kosachevskii L.Ia. Propagation of elastic waves in two-component medium. PMM. [AMM], 1959, vol. 23, no. 6, pp. 1115-1123. (In Russ.).

4. Масликова Т.И., Поленов В.С. О распространении нестационарных упругих волн в однородных пористых средах // Изв. РАН. МТТ. 2005. № 1. С. 104-108. Maslikova T.I., Polenov V.S. Propagation of transitionals elastic waves in homogeneous porous medium. Izvestiia RAN MTT. [Bulletin of RAS. RBM], 2005, no. 1, pp. 104-108. (In Russ.).

5. Поленов В.С. Нестационарные упругие волны в насыщенной жидкостью пористой среде // Теоретическая и прикладная механика. 2012. № 27. С. 84-90. Polenov V.S. Rheonomous elastic waves in a fluid-saturated porous solid. Teoreticheskaia i prikladnaia mekhanika. [Theoretical and applied mechanics], 2012, no. 27, pp. 84-90. (In Russ.).

6. Поленов В.С., Чигарев А.В. Распространение волн в насыщенной жидкостью неоднородной пористой среде // Изв РАН. ПММ. 2010. Т. 74. № 2. С. 276-284. Polenov V.S., Chigarev A.V. Propagation waves in a fluid-saturated heterogeneous porous medium. . Izvestiia RAN MTT. [Bulletin of RAS. RBM], 2010, vol. 74, no. 2, pp. 276-284. (In Russ.).

7. Нигматулин Р.И. Основы механики гетерогенных сред. М.: Наука, 1978. 336 с. Nigmatulin R.I. Osnovy mekhaniki geterogennykh sred [Fundamentals mechanics of heterogeneous environment]. Moscow, Nauka, 1978. 336 p.(In Russ.).

8. Мешков С.И., Россихин Ю.А. О распространении звуковых волн в наследственно- упругой среде // ПМТФ. 1968. № 5. С. 89-93. Meshkov S.I., Rossikhin Iu.A. Propagation of sonic waves in hereditary-elastic medium. PMTF. [AMTP], 1968, no. 5, pp. 89-93. (In Russ.).

9. Шермергор Т.Д. Теория упругости микронеоднородных сред. М.: Наука, 1977. 399 с. Shermergor T.D. Teoriia uprugosti mikroneodnorodnykh sred [Theory of elasticity microinhomogeneous medium]. Moscow, Nauka, 1977. 399 p. (In Russ.).

10. Работнов Ю.Н. Равновесие упругой среды с последействием // ПММ. 1948. Т. 12. № 1. С. 53-62. Rabotnov Iu.N. Equilibrium of elastic medium with aftereffect. PMM. [AMM], 1948, vol. 12, no. 1, pp. 53-62.

11. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с. Rabotnov Iu.N. Polzuchest’ elementov konstruktsii [Creep of structural component]. Moscow, Nauka, 1966. 752 p.

12. Постников В.С. Внутреннее трение в металлах. М.: Металлургия, 1974. 351 с. Postnikov V.S.Vnutrennee trenie v metallakh [Internal friction in metal]. Moscow, Metallurgiia, 1974. 351 p.


Review

For citations:


Polenov V.S., Kukarskikh L.A., Skliarov A.N. ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM. Proceedings of the Voronezh State University of Engineering Technologies. 2014;(1):90-93. (In Russ.) https://doi.org/10.20914/2310-1202-2014-1-90-93

Views: 560


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-910X (Print)
ISSN 2310-1202 (Online)