Nonstationary thermal field in the parallelepiped in the mode of heat conduction under boundary conditions of first kind
https://doi.org/10.20914/2310-1202-2016-2-65-68
Abstract
About the Authors
V. K. BityukovRussian Federation
D. t. sc., professor, president,
Revolution Av., 19 Voronezh
A. A. Khvostov
D. t. sc., professor, mathematic department,
Staryh Bolshevikov street, 54 «A», Voronezh
A. V. Sumina
student, Faculty of Applied Mathematics, Informatics and Mechanics,
1 Universitetskaya, Voronezh
References
1. Latif M. Heat convection. New York, Springer, 2009. 552р.
2. Tsvetkov F. F., Grigoriev E. A. Teplomassoobmen [Heat and mass transfer] Moscow, MEI, 2011. 550 p. (in Russian).
3. Polyanin A. D., Zaitsev V. F., Zhurov A. I. Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki [Methods of solving nonlinear equations of mathematical physics and mechanics]. Moscow, Fizmatlit, 2011. 256 p. (in Russian).
4. Courant R., Hilbert D. Methods of mathematical physics. V. 2. Partial differential equatins. Singalore, Wiley – VCH, 1989. 896 р.
5. Polyanin A. D., Zaitsev V. F. Spravochnik po nelineinym uravneniyam matematicheskoi fiziki [Handbook of nonlinear equations of mathematical physics: Exact solutions]. Moscow, Fizmatlit, 2002. 432 p. (in Russian).
6. Duffy D. G. Transform methods for solving partial differential equations, second edition. Chapman and Hall/CRC, 2004
Review
For citations:
Bityukov V.K., Khvostov A.A., Sumina A.V. Nonstationary thermal field in the parallelepiped in the mode of heat conduction under boundary conditions of first kind. Proceedings of the Voronezh State University of Engineering Technologies. 2016;(2):65-68. (In Russ.) https://doi.org/10.20914/2310-1202-2016-2-65-68